1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
|
// ====== Hexperiment v1.2
// Copyright 2022-2023 Jared DeCook and Zach DeCook
// Licensed under the GNU GPL Version 3.
// Hardware Information:
// Generic RP2040 running at 133MHz with 16MB of flash
// https://github.com/earlephilhower/arduino-pico
// (Additional boards manager URL: https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json)
// Tools > USB Stack > (Adafruit TinyUSB)
// Sketch > Export Compiled Binary
//
// Brilliant resource for dealing with hexagonal coordinates. https://www.redblobgames.com/grids/hexagons/
// Used this to get my hexagonal animations sorted. http://ondras.github.io/rot.js/manual/#hex/indexing
//
// Menu library documentation https://github.com/Spirik/GEM
//
// Arduino IDE setup:
// Board = Generic RP2040 (use the following additional board manager repo:
// https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json)
//
// Patches needed for U8G2, Rotary.h
// ==============================================================================
#include <Arduino.h>
#include <Adafruit_TinyUSB.h>
#include "LittleFS.h"
#include <MIDI.h>
#include <Adafruit_NeoPixel.h>
#define GEM_DISABLE_GLCD
#include <GEM_u8g2.h>
#include <Wire.h>
#include <Rotary.h>
#include "hardware/pwm.h"
#include "hardware/timer.h"
#include "hardware/irq.h"
#include <queue> // std::queue construct to store open channels in microtonal mode
#include <string>
#include "Constants.h" // preprocessor constants / macros
#include "Classes.h" // type definitions
#include "Presets.h" // pre-load tuning, scale, palette, layout definitions
// ====== useful math functions
int positiveMod(int n, int d) {
return (((n % d) + d) % d);
}
byte byteLerp(byte xOne, byte xTwo, float yOne, float yTwo, float y) {
float weight = (y - yOne) / (yTwo - yOne);
int temp = xOne + ((xTwo - xOne) * weight);
if (temp < xOne) {temp = xOne;};
if (temp > xTwo) {temp = xTwo;};
return temp;
}
Adafruit_USBD_MIDI usb_midi;
// Create a new instance of the Arduino MIDI Library,
// and attach usb_midi as the transport.
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI);
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
Rotary rotary = Rotary(ROT_PIN_A, ROT_PIN_B);
bool rotaryIsClicked = HIGH; //
bool rotaryWasClicked = HIGH; //
int8_t rotaryKnobTurns = 0; //
byte maxKnobTurns = 3;
// Create an instance of the U8g2 graphics library.
U8G2_SH1107_SEEED_128X128_F_HW_I2C u8g2(U8G2_R2, /* reset=*/ U8X8_PIN_NONE);
// Create menu object of class GEM_u8g2. Supply its constructor with reference to u8g2 object we created earlier
GEM_u8g2 menu(
u8g2, GEM_POINTER_ROW, GEM_ITEMS_COUNT_AUTO,
MENU_ITEM_HEIGHT, MENU_PAGE_SCREEN_TOP_OFFSET, MENU_VALUES_LEFT_OFFSET
);
const byte defaultContrast = 63; // GFX default contrast
bool screenSaverOn = 0; //
uint64_t screenTime = 0; // GFX timer to count if screensaver should go on
const uint64_t screenSaverTimeout = (1u << 23); // 2^23 microseconds ~ 8 seconds
const byte diagnostics = DIAGNOSTIC_ON;
// Global time variables
uint64_t runTime = 0; // Program loop consistent variable for time in microseconds since power on
uint64_t lapTime = 0; // Used to keep track of how long each loop takes. Useful for rate-limiting.
uint64_t loopTime = 0; // Used to check speed of the loop in diagnostics mode 4
// animation variables E NE NW W SW SE
int8_t vertical[] = { 0,-1,-1, 0, 1, 1};
int8_t horizontal[] = { 2, 1,-1,-2,-1, 1};
byte animationFPS = 32; // actually frames per 2^20 microseconds. close enough to 30fps
int32_t rainbowDegreeTime = 65'536; // microseconds to go through 1/360 of rainbow
// Button matrix and LED locations (PROD unit only)
const byte mPin[] = {
MPLEX_1_PIN, MPLEX_2_PIN, MPLEX_4_PIN, MPLEX_8_PIN
};
const byte cPin[] = {
COLUMN_PIN_0, COLUMN_PIN_1, COLUMN_PIN_2, COLUMN_PIN_3,
COLUMN_PIN_4, COLUMN_PIN_5, COLUMN_PIN_6,
COLUMN_PIN_7, COLUMN_PIN_8, COLUMN_PIN_9
};
const byte assignCmd[] = {
CMDBTN_0, CMDBTN_1, CMDBTN_2, CMDBTN_3,
CMDBTN_4, CMDBTN_5, CMDBTN_6
};
// MIDI note layout tables overhauled procedure since v1.1
buttonDef h[LED_COUNT]; // a collection of all the buttons from 0 to 139
// h[i] refers to the button with the LED address = i.
byte enableMIDI = 1;
const byte layoutCount = sizeof(layoutOptions) / sizeof(layoutDef);
const byte scaleCount = sizeof(scaleOptions) / sizeof(scaleDef);
// Tone and Arpeggiator variables
oscillator synth[POLYPHONY_LIMIT]; // maximum polyphony
byte poly = 0; // current polyphony
std::queue<byte> openChannelQueue;
const byte attenuation[] = {67,67,48,39,34,30,28,26,24,23,22,21,20,19,18,17};
byte arpeggiatingNow = UNUSED_NOTE; // if this is 255, buzzer set to off (0% duty cycle)
uint64_t arpeggiateTime = 0; // Used to keep track of when this note started buzzin
uint32_t arpeggiateLength = 65'536; // in microseconds
byte scaleLock = 0;
byte perceptual = 1;
int velWheelSpeed = 8;
int modWheelSpeed = 8;
int pbWheelSpeed = 1024;
wheelDef modWheel = { false, false, // standard mode, not sticky
&h[assignCmd[4]].btnState, &h[assignCmd[5]].btnState, &h[assignCmd[6]].btnState,
0, 127, &modWheelSpeed, 0, 0, 0, 0
};
wheelDef pbWheel = { false, false, // standard mode, not sticky
&h[assignCmd[4]].btnState, &h[assignCmd[5]].btnState, &h[assignCmd[6]].btnState,
-8192, 8191, &pbWheelSpeed, 0, 0, 0, 0
};
wheelDef velWheel = { false, true, // standard mode, sticky
&h[assignCmd[0]].btnState, &h[assignCmd[1]].btnState, &h[assignCmd[2]].btnState,
0, 127, &velWheelSpeed, 96, 96, 96, 0
};
bool toggleWheel = 0; // 0 for mod, 1 for pb
// MENU SYSTEM SETUP //
// Create menu page object of class GEMPage. Menu page holds menu items (GEMItem) and represents menu level.
// Menu can have multiple menu pages (linked to each other) with multiple menu items each
GEMPage menuPageMain("HexBoard MIDI Controller");
GEMPage menuPageTuning("Tuning");
GEMItem menuTuningBack("<< Back", menuPageMain);
GEMItem menuGotoTuning("Tuning", menuPageTuning);
GEMPage menuPageLayout("Layout");
GEMItem menuGotoLayout("Layout", menuPageLayout);
GEMItem menuLayoutBack("<< Back", menuPageMain);
GEMPage menuPageScales("Scales");
GEMItem menuGotoScales("Scales", menuPageScales);
GEMItem menuScalesBack("<< Back", menuPageMain);
GEMPage menuPageControl("Control wheel");
GEMItem menuGotoControl("Control wheel", menuPageControl);
GEMItem menuControlBack("<< Back", menuPageMain);
// the following get initialized in the setup() routine.
GEMItem* menuItemTuning[TUNINGCOUNT];
GEMItem* menuItemLayout[layoutCount];
GEMItem* menuItemScales[scaleCount];
GEMSelect* selectKey[TUNINGCOUNT];
GEMItem* menuItemKeys[TUNINGCOUNT];
void resetHexLEDs(); // forward-declaration
SelectOptionByte optionByteYesOrNo[] = { { "No", 0 }, { "Yes" , 1 } };
GEMSelect selectYesOrNo( sizeof(optionByteYesOrNo) / sizeof(SelectOptionByte), optionByteYesOrNo);
GEMItem menuItemScaleLock( "Scale lock?", scaleLock, selectYesOrNo);
GEMItem menuItemPercep( "Fix color:", perceptual, selectYesOrNo, resetHexLEDs);
byte playbackMode = BUZZ_POLY;
SelectOptionByte optionBytePlayback[] = { { "Off", BUZZ_OFF }, { "Mono", BUZZ_MONO }, { "Arp'gio", BUZZ_ARPEGGIO }, { "Poly", BUZZ_POLY } };
GEMSelect selectPlayback(sizeof(optionBytePlayback) / sizeof(SelectOptionByte), optionBytePlayback);
GEMItem menuItemPlayback( "Buzzer:", playbackMode, selectPlayback);
void changeTranspose(); // forward-declaration
int transposeSteps = 0;
// doing this long-hand because the STRUCT has problems accepting string conversions of numbers for some reason
SelectOptionInt optionIntTransposeSteps[] = {
{"-127",-127},{"-126",-126},{"-125",-125},{"-124",-124},{"-123",-123},{"-122",-122},{"-121",-121},{"-120",-120},{"-119",-119},{"-118",-118},{"-117",-117},{"-116",-116},{"-115",-115},{"-114",-114},{"-113",-113},
{"-112",-112},{"-111",-111},{"-110",-110},{"-109",-109},{"-108",-108},{"-107",-107},{"-106",-106},{"-105",-105},{"-104",-104},{"-103",-103},{"-102",-102},{"-101",-101},{"-100",-100},{"- 99",- 99},{"- 98",- 98},
{"- 97",- 97},{"- 96",- 96},{"- 95",- 95},{"- 94",- 94},{"- 93",- 93},{"- 92",- 92},{"- 91",- 91},{"- 90",- 90},{"- 89",- 89},{"- 88",- 88},{"- 87",- 87},{"- 86",- 86},{"- 85",- 85},{"- 84",- 84},{"- 83",- 83},
{"- 82",- 82},{"- 81",- 81},{"- 80",- 80},{"- 79",- 79},{"- 78",- 78},{"- 77",- 77},{"- 76",- 76},{"- 75",- 75},{"- 74",- 74},{"- 73",- 73},{"- 72",- 72},{"- 71",- 71},{"- 70",- 70},{"- 69",- 69},{"- 68",- 68},
{"- 67",- 67},{"- 66",- 66},{"- 65",- 65},{"- 64",- 64},{"- 63",- 63},{"- 62",- 62},{"- 61",- 61},{"- 60",- 60},{"- 59",- 59},{"- 58",- 58},{"- 57",- 57},{"- 56",- 56},{"- 55",- 55},{"- 54",- 54},{"- 53",- 53},
{"- 52",- 52},{"- 51",- 51},{"- 50",- 50},{"- 49",- 49},{"- 48",- 48},{"- 47",- 47},{"- 46",- 46},{"- 45",- 45},{"- 44",- 44},{"- 43",- 43},{"- 42",- 42},{"- 41",- 41},{"- 40",- 40},{"- 39",- 39},{"- 38",- 38},
{"- 37",- 37},{"- 36",- 36},{"- 35",- 35},{"- 34",- 34},{"- 33",- 33},{"- 32",- 32},{"- 31",- 31},{"- 30",- 30},{"- 29",- 29},{"- 28",- 28},{"- 27",- 27},{"- 26",- 26},{"- 25",- 25},{"- 24",- 24},{"- 23",- 23},
{"- 22",- 22},{"- 21",- 21},{"- 20",- 20},{"- 19",- 19},{"- 18",- 18},{"- 17",- 17},{"- 16",- 16},{"- 15",- 15},{"- 14",- 14},{"- 13",- 13},{"- 12",- 12},{"- 11",- 11},{"- 10",- 10},{"- 9",- 9},{"- 8",- 8},
{"- 7",- 7},{"- 6",- 6},{"- 5",- 5},{"- 4",- 4},{"- 3",- 3},{"- 2",- 2},{"- 1",- 1},{"+/-0", 0},{"+ 1", 1},{"+ 2", 2},{"+ 3", 3},{"+ 4", 4},{"+ 5", 5},{"+ 6", 6},{"+ 7", 7},
{"+ 8", 8},{"+ 9", 9},{"+ 10", 10},{"+ 11", 11},{"+ 12", 12},{"+ 13", 13},{"+ 14", 14},{"+ 15", 15},{"+ 16", 16},{"+ 17", 17},{"+ 18", 18},{"+ 19", 19},{"+ 20", 20},{"+ 21", 21},{"+ 22", 22},
{"+ 23", 23},{"+ 24", 24},{"+ 25", 25},{"+ 26", 26},{"+ 27", 27},{"+ 28", 28},{"+ 29", 29},{"+ 30", 30},{"+ 31", 31},{"+ 32", 32},{"+ 33", 33},{"+ 34", 34},{"+ 35", 35},{"+ 36", 36},{"+ 37", 37},
{"+ 38", 38},{"+ 39", 39},{"+ 40", 40},{"+ 41", 41},{"+ 42", 42},{"+ 43", 43},{"+ 44", 44},{"+ 45", 45},{"+ 46", 46},{"+ 47", 47},{"+ 48", 48},{"+ 49", 49},{"+ 50", 50},{"+ 51", 51},{"+ 52", 52},
{"+ 53", 53},{"+ 54", 54},{"+ 55", 55},{"+ 56", 56},{"+ 57", 57},{"+ 58", 58},{"+ 59", 59},{"+ 60", 60},{"+ 61", 61},{"+ 62", 62},{"+ 63", 63},{"+ 64", 64},{"+ 65", 65},{"+ 66", 66},{"+ 67", 67},
{"+ 68", 68},{"+ 69", 69},{"+ 70", 70},{"+ 71", 71},{"+ 72", 72},{"+ 73", 73},{"+ 74", 74},{"+ 75", 75},{"+ 76", 76},{"+ 77", 77},{"+ 78", 78},{"+ 79", 79},{"+ 80", 80},{"+ 81", 81},{"+ 82", 82},
{"+ 83", 83},{"+ 84", 84},{"+ 85", 85},{"+ 86", 86},{"+ 87", 87},{"+ 88", 88},{"+ 89", 89},{"+ 90", 90},{"+ 91", 91},{"+ 92", 92},{"+ 93", 93},{"+ 94", 94},{"+ 95", 95},{"+ 96", 96},{"+ 97", 97},
{"+ 98", 98},{"+ 99", 99},{"+100", 100},{"+101", 101},{"+102", 102},{"+103", 103},{"+104", 104},{"+105", 105},{"+106", 106},{"+107", 107},{"+108", 108},{"+109", 109},{"+110", 110},{"+111", 111},{"+112", 112},
{"+113", 113},{"+114", 114},{"+115", 115},{"+116", 116},{"+117", 117},{"+118", 118},{"+119", 119},{"+120", 120},{"+121", 121},{"+122", 122},{"+123", 123},{"+124", 124},{"+125", 125},{"+126", 126},{"+127", 127}
};
GEMSelect selectTransposeSteps( 255, optionIntTransposeSteps);
GEMItem menuItemTransposeSteps( "Transpose:", transposeSteps, selectTransposeSteps, changeTranspose);
byte colorMode = TIERED_COLOR_MODE;
SelectOptionByte optionByteColor[] = { { "Rainbow", RAINBOW_MODE }, { "Tiered" , TIERED_COLOR_MODE } };
GEMSelect selectColor( sizeof(optionByteColor) / sizeof(SelectOptionByte), optionByteColor);
GEMItem menuItemColor( "Color mode:", colorMode, selectColor, resetHexLEDs);
byte animationType = ANIMATE_NONE;
SelectOptionByte optionByteAnimate[] = { { "None" , ANIMATE_NONE }, { "Octave", ANIMATE_OCTAVE },
{ "By Note", ANIMATE_BY_NOTE }, { "Star", ANIMATE_STAR }, { "Splash" , ANIMATE_SPLASH }, { "Orbit", ANIMATE_ORBIT } };
GEMSelect selectAnimate( sizeof(optionByteAnimate) / sizeof(SelectOptionByte), optionByteAnimate);
GEMItem menuItemAnimate( "Animation:", animationType, selectAnimate);
byte currWave = WAVEFORM_SAW;
SelectOptionByte optionByteWaveform[] = { { "Square", WAVEFORM_SQUARE }, { "Saw", WAVEFORM_SAW } };
GEMSelect selectWaveform(sizeof(optionByteWaveform) / sizeof(SelectOptionByte), optionByteWaveform);
GEMItem menuItemWaveform( "Waveform:", currWave, selectWaveform);
SelectOptionInt optionIntModWheel[] = { { "too slo", 1 }, { "Turtle", 2 }, { "Slow", 4 },
{ "Medium", 8 }, { "Fast", 16 }, { "Cheetah", 32 }, { "Instant", 127 } };
GEMSelect selectModSpeed(sizeof(optionIntModWheel) / sizeof(SelectOptionInt), optionIntModWheel);
GEMItem menuItemModSpeed( "Mod wheel:", modWheelSpeed, selectModSpeed);
GEMItem menuItemVelSpeed( "Vel wheel:", velWheelSpeed, selectModSpeed);
SelectOptionInt optionIntPBWheel[] = { { "too slo", 128 }, { "Turtle", 256 }, { "Slow", 512 },
{ "Medium", 1024 }, { "Fast", 2048 }, { "Cheetah", 4096 }, { "Instant", 16384 } };
GEMSelect selectPBSpeed(sizeof(optionIntPBWheel) / sizeof(SelectOptionInt), optionIntPBWheel);
GEMItem menuItemPBSpeed( "PB wheel:", pbWheelSpeed, selectPBSpeed);
// put all user-selectable options into a class so that down the line these can be saved and loaded.
class presetDef {
public:
std::string presetName;
int tuningIndex; // instead of using pointers, i chose to store index value of each option, to be saved to a .pref or .ini or something
int layoutIndex;
int scaleIndex;
int keyStepsFromA; // what key the scale is in, where zero equals A.
int transpose;
// define simple recall functions
tuningDef tuning() {
return tuningOptions[tuningIndex];
};
layoutDef layout() {
return layoutOptions[layoutIndex];
};
scaleDef scale() {
return scaleOptions[scaleIndex];
};
int layoutsBegin() {
if (tuningIndex == TUNING_12EDO) {
return 0;
} else {
int temp = 0;
while (layoutOptions[temp].tuning < tuningIndex) {
temp++;
};
return temp;
};
};
int keyStepsFromC() {
return -(tuning().spanCtoA() + keyStepsFromA);
};
int pitchRelToA4(int givenStepsFromC) {
return givenStepsFromC - tuning().spanCtoA() + transpose;
};
int keyDegree(int givenStepsFromC) {
return positiveMod(givenStepsFromC + keyStepsFromC(), tuning().cycleLength);
};
};
presetDef current = {
"Default", // name
TUNING_12EDO, // tuning
0, // default to the first layout, wicki hayden
0, // default to using no scale (chromatic)
0, // default to the key of C, which in 12EDO is -9 steps from A.
0 // default to no transposition
};
// ====== diagnostic wrapper
void sendToLog(std::string msg) {
if (diagnostics) {
Serial.println(msg.c_str());
};
}
// ====== LED routines
int16_t transformHue(float h) {
// red yellow green blue
int hueIn[] = { 0, 9, 18, 90, 108, 126, 135, 150, 198, 243, 252, 261, 306, 333, 360};
// #ff0000 #ffff00 #00ff00 #00ffff #0000ff #ff00ff
int hueOut[] = { 0, 3640, 5461,10922,12743,16384,21845,27306,32768,38229,43690,49152,54613,58254,65535};
float D = fmod(h,360);
byte B = 0;
while (D - hueIn[B] > 0) {
B++;
};
float T = (D - hueIn[B - 1]) / (float)(hueIn[B] - hueIn[B - 1]);
return (hueOut[B - 1] * (1 - T)) + (hueOut[B] * T);
}
uint32_t getLEDcode(colorDef c) {
return strip.gamma32(strip.ColorHSV(transformHue(c.hue),c.sat,c.val));
}
void resetHexLEDs() { // calculate color codes for each hex, store for playback
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
colorDef setColor;
byte paletteIndex = positiveMod(h[i].stepsFromC,current.tuning().cycleLength);
switch (colorMode) {
case TIERED_COLOR_MODE:
setColor = palette[current.tuningIndex].getColor(paletteIndex);
break;
default:
setColor =
{ 360.0 * ((float)paletteIndex / (float)current.tuning().cycleLength)
, SAT_VIVID
, VALUE_NORMAL
};
break;
};
h[i].LEDcolorOn = getLEDcode(setColor);
h[i].LEDcolorPlay = getLEDcode(setColor.mixWithWhite()); // "mix with white"
setColor = {HUE_NONE,SAT_BW,VALUE_BLACK};
h[i].LEDcolorOff = getLEDcode(setColor); // turn off entirely
h[i].LEDcolorAnim = h[i].LEDcolorPlay;
};
};
sendToLog("LED codes re-calculated.");
}
void resetVelocityLEDs() {
colorDef tempColor =
{ (runTime % (rainbowDegreeTime * 360)) / rainbowDegreeTime
, SAT_MODERATE
, byteLerp(0,255,85,127,velWheel.curValue)
};
strip.setPixelColor(assignCmd[0], getLEDcode(tempColor));
tempColor.val = byteLerp(0,255,42,85,velWheel.curValue);
strip.setPixelColor(assignCmd[1], getLEDcode(tempColor));
tempColor.val = byteLerp(0,255,0,42,velWheel.curValue);
strip.setPixelColor(assignCmd[2], getLEDcode(tempColor));
}
void resetWheelLEDs() {
// middle button
int tempSat = SAT_BW;
colorDef tempColor = {HUE_NONE, tempSat, (toggleWheel ? VALUE_SHADE : VALUE_LOW)};
strip.setPixelColor(assignCmd[3], getLEDcode(tempColor));
if (toggleWheel) {
// pb red / green
tempSat = byteLerp(SAT_BW,SAT_VIVID,0,8192,abs(pbWheel.curValue));
tempColor = {((pbWheel.curValue > 0) ? HUE_RED : HUE_CYAN), tempSat, VALUE_FULL};
strip.setPixelColor(assignCmd[5], getLEDcode(tempColor));
tempColor.val = tempSat * (pbWheel.curValue > 0);
strip.setPixelColor(assignCmd[4], getLEDcode(tempColor));
tempColor.val = tempSat * (pbWheel.curValue < 0);
strip.setPixelColor(assignCmd[6], getLEDcode(tempColor));
} else {
// mod blue / yellow
tempSat = byteLerp(SAT_BW,SAT_VIVID,0,64,abs(modWheel.curValue - 63));
tempColor = {((modWheel.curValue > 63) ? HUE_YELLOW : HUE_INDIGO), tempSat, 127 + (tempSat / 2)};
strip.setPixelColor(assignCmd[6], getLEDcode(tempColor));
if (modWheel.curValue <= 63) {
tempColor.val = 127 - (tempSat / 2);
}
strip.setPixelColor(assignCmd[5], getLEDcode(tempColor));
tempColor.val = tempSat * (modWheel.curValue > 63);
strip.setPixelColor(assignCmd[4], getLEDcode(tempColor));
};
}
uint32_t applyNotePixelColor(byte x){
if (h[x].animate) { return h[x].LEDcolorAnim;
} else if (h[x].channel) { return h[x].LEDcolorPlay;
} else if (h[x].inScale) { return h[x].LEDcolorOn;
} else { return h[x].LEDcolorOff;
};
}
// ====== layout routines
float freqToMIDI(float Hz) { // formula to convert from Hz to MIDI note
return 69.0 + 12.0 * log2f(Hz / 440.0);
}
float MIDItoFreq(float MIDI) { // formula to convert from MIDI note to Hz
return 440.0 * exp2((MIDI - 69.0) / 12.0);
}
float stepsToMIDI(int16_t stepsFromA) { // return the MIDI pitch associated
return freqToMIDI(CONCERT_A_HZ) + ((float)stepsFromA * (float)current.tuning().stepSize / 100.0);
}
void assignPitches() { // run this if the layout, key, or transposition changes, but not if color or scale changes
sendToLog("assignPitch was called:");
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
// steps is the distance from C
// the stepsToMIDI function needs distance from A4
// it also needs to reflect any transposition, but
// NOT the key of the scale.
float N = stepsToMIDI(current.pitchRelToA4(h[i].stepsFromC));
if (N < 0 || N >= 128) {
h[i].note = UNUSED_NOTE;
h[i].bend = 0;
h[i].frequency = 0.0;
} else {
h[i].note = ((N >= 127) ? 127 : round(N));
h[i].bend = (ldexp(N - h[i].note, 13) / PITCH_BEND_SEMIS);
h[i].frequency = MIDItoFreq(N);
};
sendToLog(
"hex #" + std::to_string(i) + ", " +
"steps=" + std::to_string(h[i].stepsFromC) + ", " +
"isCmd? " + std::to_string(h[i].isCmd) + ", " +
"note=" + std::to_string(h[i].note) + ", " +
"bend=" + std::to_string(h[i].bend) + ", " +
"freq=" + std::to_string(h[i].frequency) + ", " +
"inScale? " + std::to_string(h[i].inScale) + "."
);
};
};
sendToLog("assignPitches complete.");
}
void applyScale() {
sendToLog("applyScale was called:");
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
if (current.scale().tuning == ALL_TUNINGS) {
h[i].inScale = 1;
} else {
byte degree = current.keyDegree(h[i].stepsFromC);
if (degree == 0) {
h[i].inScale = 1; // the root is always in the scale
} else {
byte tempSum = 0;
byte iterator = 0;
while (degree > tempSum) {
tempSum += current.scale().pattern[iterator];
iterator++;
}; // add the steps in the scale, and you're in scale
h[i].inScale = (tempSum == degree); // if the note lands on one of those sums
};
};
sendToLog(
"hex #" + std::to_string(i) + ", " +
"steps=" + std::to_string(h[i].stepsFromC) + ", " +
"isCmd? " + std::to_string(h[i].isCmd) + ", " +
"note=" + std::to_string(h[i].note) + ", " +
"inScale? " + std::to_string(h[i].inScale) + "."
);
};
};
resetHexLEDs();
sendToLog("applyScale complete.");
}
void applyLayout() { // call this function when the layout changes
sendToLog("buildLayout was called:");
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
int8_t distCol = h[i].coordCol - h[current.layout().hexMiddleC].coordCol;
int8_t distRow = h[i].coordRow - h[current.layout().hexMiddleC].coordRow;
h[i].stepsFromC = (
(distCol * current.layout().acrossSteps) +
(distRow * (
current.layout().acrossSteps +
(2 * current.layout().dnLeftSteps)
))
) / 2;
sendToLog(
"hex #" + std::to_string(i) + ", " +
"steps from C4=" + std::to_string(h[i].stepsFromC) + "."
);
};
};
applyScale(); // when layout changes, have to re-apply scale and re-apply LEDs
assignPitches(); // same with pitches
u8g2.setDisplayRotation(current.layout().isPortrait ? U8G2_R2 : U8G2_R1); // and landscape / portrait rotation
sendToLog("buildLayout complete.");
}
// ====== buzzer routines
// the piezo buzzer is an on/off switch that can buzz as fast as the processor clock (133MHz)
// the processor is fast enough to emulate analog signals.
// the RP2040 has pulse width modulation (PWM) built into the hardware.
// it can output a %-on / %-off pattern at any percentage desired.
// at high enough frequencies, it sounds the same as an analog signal at that % volume.
// to emulate an 8-bit (0-255) analog sample, with phase-correction, we need a 9 bit (512) cycle.
// we can safely sample up to 260kHz (133MHz / 512) this way.
// the highest frequency note in MIDI is about 12.5kHz.
// it is theoretically possible to emulate waveforms with 4 bits resolution (260kHz / 12.5kHz)
// but we are limited by calculation time.
// the macro POLLING_INTERVAL_IN_MICROSECONDS is set to a value that is long enough
// that the audio output is accurate, but short enough to allow as much resolution as possible.
// currently, 32 microseconds appears to be sufficient (about 500 CPU cycles).
//
// 1) set a constant PWM signal at F_CPU/512 (260kHz) to play on pin 23
// the PWM signal can emulate an analog value from 0 to 255.
// this is done in setup1().
// 2) if a note is to be played on the buzzer, assign a channel (same as MPE mode for MIDI)
// and calculate the frequency. this might include pitch bends.
// this is done in buzz().
// 3) the frequency is expressed as "amount you'd increment a counter every polling interval
// so that you roll over a 16-bit (65536) value at that frequency.
// example: 440Hz note, 32microS polling
// 65536 x 440/s x .000032s = an increment of 923 per poll
// this is done in buzz().
// 4) the object called synth[] stores the increment and counter for each channel (0-14)=MIDI(2 thru 16)
// at every poll, each counter is incremented (will roll over since the type is 16-bit unsigned integer)
// and depending on the waveform, the 8-bit analog level is calculated.
// example: square waves return 0 if the counter is 0-32767, 255 if 32768-65535.
// saw waves return (counter / 256).
// 5) the analog levels are mixed. i use an attenuation function, basically (# of simultaneous notes) ^ -0.5,
// so the perceived volume is consistent. the velocity wheel is also multiplied in.
// 6) hardware timers are used because they will interrupt and run even if other code is active.
// otherwise, the subperiod is essentially floored at the length of the main loop() which is
// thousands of microseconds long!
// further, we can run this process on the 2nd core so it doesn't interrupt the user experience
// the implementation of 6) is to make a single timer that calls back an interrupt function called poll().
// the callback function then resets the interrupt flag and resets the timer alarm.
// the timer is set to go off at the time of the last timer + the polling interval
// RUN ON CORE 2
void poll() {
hw_clear_bits(&timer_hw->intr, 1u << ALARM_NUM);
timer_hw->alarm[ALARM_NUM] = timer_hw->timerawl + POLL_INTERVAL_IN_MICROSECONDS;
uint16_t lvl = 0;
byte p;
for (byte i = 0; i < POLYPHONY_LIMIT; i++) {
synth[i].counter += synth[i].increment; // should loop from 65536 -> 0
switch (currWave) {
case WAVEFORM_SQUARE:
p = 0 - ((synth[i].counter & 0x8000) >> 15); // grab first bit -> 0 or -1 (255)
break;
case WAVEFORM_SAW:
p = (synth[i].counter >> 8); // 0 thru 255
break;
default:
p = 0;
break;
};
lvl += p; // for polyphony=15, cap=255*15=3825
};
lvl = (lvl * attenuation[poly]) >> 8; // cap = 3825 * 17 / 256 = 254
lvl = (lvl * velWheel.curValue) >> 7;
pwm_set_chan_level(TONE_SL, TONE_CH, lvl);
}
// RUN ON CORE 1
void buzz(byte x, bool p) {
byte ch = h[x].channel - 2;
synth[ch].counter = 0;
if (p) {
synth[ch].increment = h[x].frequency // note frequency
* exp2(pbWheel.curValue * PITCH_BEND_SEMIS / 98304.0) // adjusted for global pitch bend
* ((POLL_INTERVAL_IN_MICROSECONDS << 16) / 1000000); // cycle 0-65535 at resultant frequency
} else {
synth[ch].increment = 0; // zero effectively silences the channel
};
}
// ====== MIDI routines
void setAllNotesOff(byte Ch) {
if (enableMIDI) {
MIDI.sendControlChange(123, 0, Ch);
}
}
void setPitchBendRange(byte Ch, byte semitones) {
if (enableMIDI) { // MIDI mode only
MIDI.beginRpn(0, Ch);
MIDI.sendRpnValue(semitones << 7, Ch);
MIDI.endRpn(Ch);
sendToLog(
"set pitch bend range on ch " +
std::to_string(Ch) + " to be " +
std::to_string(semitones) + " semitones"
);
}
}
void setMPEzone(byte masterCh, byte sizeOfZone) {
if (enableMIDI) { // MIDI mode only
MIDI.beginRpn(6, masterCh);
MIDI.sendRpnValue(sizeOfZone << 7, masterCh);
MIDI.endRpn(masterCh);
sendToLog(
"tried sending MIDI msg to set MPE zone, master ch " +
std::to_string(masterCh) + ", zone of this size: " + std::to_string(sizeOfZone)
);
}
}
void applyMPEmode() {
while (!openChannelQueue.empty()) { // empty the channel queue
openChannelQueue.pop();
};
for (byte i = 1; i <= 16; i++) {
setAllNotesOff(i); // turn off all notes
setPitchBendRange(i, PITCH_BEND_SEMIS); // force pitch bend back to the expected range of 2 semitones.
};
setMPEzone(1, POLYPHONY_LIMIT); // MPE zone 1 = ch 2 thru 16
for (byte i = 0; i < POLYPHONY_LIMIT; i++) {
openChannelQueue.push(i + 2);
sendToLog("pushed ch " + std::to_string(i + 2) + " to the open channel queue");
};
}
void chgModulation() {
if (enableMIDI) { // MIDI mode only
MIDI.sendControlChange(1, modWheel.curValue, 1);
sendToLog("sent mod value " + std::to_string(modWheel.curValue) + " to ch 1");
};
}
void chgUniversalPB() {
if (enableMIDI) { // MIDI mode only
MIDI.sendPitchBend(pbWheel.curValue, 1);
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
if (h[i].channel) {
buzz(i,true); // rebuzz all notes if the pitch bend changes
};
};
};
sendToLog("sent pb wheel value " + std::to_string(pbWheel.curValue) + " to ch 1");
};
}
// ====== hex press routines
void playNote(byte x) {
// this gets called on any non-command hex
// that is not scale-locked.
if (!(h[x].channel)) { // but just in case, check
if (openChannelQueue.empty()) { // if there aren't any open channels
sendToLog("channel queue was empty so did not play");
} else {
h[x].channel = openChannelQueue.front(); // value in MIDI terms (1-16)
openChannelQueue.pop();
sendToLog("popped " + std::to_string(h[x].channel) + " off the queue");
if (!(playbackMode == BUZZ_OFF)) {
buzz(x, true);
};
if (enableMIDI) {
MIDI.sendPitchBend(h[x].bend, h[x].channel); // ch 1-16
MIDI.sendNoteOn(h[x].note, velWheel.curValue, h[x].channel); // ch 1-16
sendToLog(
"sent MIDI noteOn: " + std::to_string(h[x].note) +
" pb " + std::to_string(h[x].bend) +
" vel " + std::to_string(velWheel.curValue) +
" ch " + std::to_string(h[x].channel)
);
};
};
};
}
void stopNote(byte x) {
// this gets called on any non-command hex
// that is not scale-locked.
if (h[x].channel) { // but just in case, check
openChannelQueue.push(h[x].channel);
sendToLog("pushed " + std::to_string(h[x].channel) + " on the queue");
if (!(playbackMode == BUZZ_OFF)) {
buzz(x, false);
};
if (playbackMode == BUZZ_ARPEGGIO) {
arpeggiateTime = 0; // trigger arpeggiate function early if any note changes
};
if (enableMIDI) {
MIDI.sendNoteOff(h[x].note, velWheel.curValue, h[x].channel);
sendToLog(
"sent note off: " + std::to_string(h[x].note) +
" pb " + std::to_string(h[x].bend) +
" vel " + std::to_string(velWheel.curValue) +
" ch " + std::to_string(h[x].channel)
);
};
h[x].channel = 0;
};
}
void cmdOn(byte x) { // volume and mod wheel read all current buttons
switch (h[x].note) {
case CMDB + 3:
toggleWheel = !toggleWheel;
break;
default:
// the rest should all be taken care of within the wheelDef structure
break;
};
}
void cmdOff(byte x) { // pitch bend wheel only if buttons held.
switch (h[x].note) {
default:
break; // nothing; should all be taken care of within the wheelDef structure
};
}
// ====== animations
uint64_t animFrame(byte x) {
if (h[x].timePressed) { // 2^20 microseconds is close enough to 1 second
return 1 + (((runTime - h[x].timePressed) * animationFPS) >> 20);
} else {
return 0;
};
}
void flagToAnimate(int8_t r, int8_t c) {
if (!
( ( r < 0 ) || ( r >= ROWCOUNT )
|| ( c < 0 ) || ( c >= (2 * COLCOUNT) )
|| ( ( c + r ) & 1 )
)
) {
h[(10 * r) + (c / 2)].animate = 1;
};
}
void animateMirror() {
for (byte i = 0; i < LED_COUNT; i++) { // check every hex
if ((!(h[i].isCmd)) && (h[i].channel)) { // that is a held note
for (byte j = 0; j < LED_COUNT; j++) { // compare to every hex
if ((!(h[j].isCmd)) && (!(h[j].channel))) { // that is a note not being played
int16_t temp = h[i].stepsFromC - h[j].stepsFromC; // look at difference between notes
if (animationType == ANIMATE_OCTAVE) { // set octave diff to zero if need be
temp = positiveMod(temp, current.tuning().cycleLength);
};
if (temp == 0) { // highlight if diff is zero
h[j].animate = 1;
};
};
};
};
};
}
void animateOrbit() {
for (byte i = 0; i < LED_COUNT; i++) { // check every hex
if ((!(h[i].isCmd)) && (h[i].channel) && ((h[i].inScale) || (!scaleLock))) { // that is a held note
byte tempDir = (animFrame(i) % 6);
flagToAnimate(h[i].coordRow + vertical[tempDir], h[i].coordCol + horizontal[tempDir]); // different neighbor each frame
};
};
}
void animateRadial() {
for (byte i = 0; i < LED_COUNT; i++) { // check every hex
if (!(h[i].isCmd) && ((h[i].inScale) || (!scaleLock))) { // that is a note
uint64_t radius = animFrame(i);
if ((radius > 0) && (radius < 16)) { // played in the last 16 frames
byte steps = ((animationType == ANIMATE_SPLASH) ? radius : 1); // star = 1 step to next corner; ring = 1 step per hex
int8_t turtleRow = h[i].coordRow + (radius * vertical[HEX_DIRECTION_SW]);
int8_t turtleCol = h[i].coordCol + (radius * horizontal[HEX_DIRECTION_SW]);
for (byte dir = HEX_DIRECTION_EAST; dir < 6; dir++) { // walk along the ring in each of the 6 hex directions
for (byte i = 0; i < steps; i++) { // # of steps to the next corner
flagToAnimate(turtleRow,turtleCol); // flag for animation
turtleRow += (vertical[dir] * (radius / steps));
turtleCol += (horizontal[dir] * (radius / steps));
};
};
};
};
};
}
// ====== menu routines
void menuHome() {
menu.setMenuPageCurrent(menuPageMain);
menu.drawMenu();
}
void showOnlyValidLayoutChoices() { // re-run at setup and whenever tuning changes
for (byte L = 0; L < layoutCount; L++) {
menuItemLayout[L]->hide((layoutOptions[L].tuning != current.tuningIndex));
};
sendToLog("menu: Layout choices were updated.");
}
void showOnlyValidScaleChoices() { // re-run at setup and whenever tuning changes
for (int S = 0; S < scaleCount; S++) {
menuItemScales[S]->hide((scaleOptions[S].tuning != current.tuningIndex) && (scaleOptions[S].tuning != ALL_TUNINGS));
};
sendToLog("menu: Scale choices were updated.");
}
void showOnlyValidKeyChoices() { // re-run at setup and whenever tuning changes
for (int T = 0; T < TUNINGCOUNT; T++) {
menuItemKeys[T]->hide((T != current.tuningIndex));
};
sendToLog("menu: Key choices were updated.");
}
void changeLayout(GEMCallbackData callbackData) { // when you change the layout via the menu
byte selection = callbackData.valByte;
if (selection != current.layoutIndex) {
current.layoutIndex = selection;
applyLayout();
};
menuHome();
}
void changeScale(GEMCallbackData callbackData) { // when you change the scale via the menu
int selection = callbackData.valInt;
if (selection != current.scaleIndex) {
current.scaleIndex = selection;
applyScale();
};
menuHome();
}
void changeKey() { // when you change the key via the menu
applyScale();
}
void changeTranspose() { // when you change the transpose via the menu
current.transpose = transposeSteps;
assignPitches();
}
void changeTuning(GEMCallbackData callbackData) { // not working yet
byte selection = callbackData.valByte;
if (selection != current.tuningIndex) {
current.tuningIndex = selection;
current.layoutIndex = current.layoutsBegin(); // reset layout to first in list
current.scaleIndex = 0; // reset scale to "no scale"
current.keyStepsFromA = current.tuning().spanCtoA(); // reset key to C
showOnlyValidLayoutChoices(); // change list of choices in GEM Menu
showOnlyValidScaleChoices(); // change list of choices in GEM Menu
showOnlyValidKeyChoices(); // change list of choices in GEM Menu
applyLayout(); // apply changes above
applyMPEmode(); // clear out MIDI queue
};
menuHome();
}
void createTuningMenuItems() {
for (byte T = 0; T < TUNINGCOUNT; T++) {
menuItemTuning[T] = new GEMItem(tuningOptions[T].name.c_str(), changeTuning, T);
menuPageTuning.addMenuItem(*menuItemTuning[T]);
};
}
void createLayoutMenuItems() {
for (byte L = 0; L < layoutCount; L++) { // create pointers to all layouts
menuItemLayout[L] = new GEMItem(layoutOptions[L].name.c_str(), changeLayout, L);
menuPageLayout.addMenuItem(*menuItemLayout[L]);
};
showOnlyValidLayoutChoices();
}
void createKeyMenuItems() {
for (byte T = 0; T < TUNINGCOUNT; T++) {
selectKey[T] = new GEMSelect(tuningOptions[T].cycleLength, tuningOptions[T].keyChoices);
menuItemKeys[T] = new GEMItem("Key:", current.keyStepsFromA, *selectKey[T], changeKey);
menuPageScales.addMenuItem(*menuItemKeys[T]);
};
showOnlyValidKeyChoices();
}
void createScaleMenuItems() {
for (int S = 0; S < scaleCount; S++) { // create pointers to all scale items, filter them as you go
menuItemScales[S] = new GEMItem(scaleOptions[S].name.c_str(), changeScale, S);
menuPageScales.addMenuItem(*menuItemScales[S]);
};
showOnlyValidScaleChoices();
}
// ====== setup routines
void testDiagnostics() {
sendToLog("theHDM was here");
}
void setupMIDI() {
usb_midi.setStringDescriptor("HexBoard MIDI"); // Initialize MIDI, and listen to all MIDI channels
MIDI.begin(MIDI_CHANNEL_OMNI); // This will also call usb_midi's begin()
applyMPEmode();
sendToLog("setupMIDI okay");
}
void setupFileSystem() {
Serial.begin(115200); // Set serial to make uploads work without bootsel button
LittleFSConfig cfg; // Configure file system defaults
cfg.setAutoFormat(true); // Formats file system if it cannot be mounted.
LittleFS.setConfig(cfg);
LittleFS.begin(); // Mounts file system.
if (!LittleFS.begin()) {
sendToLog("An Error has occurred while mounting LittleFS");
} else {
sendToLog("LittleFS mounted OK");
}
}
void setupPins() {
for (byte p = 0; p < sizeof(cPin); p++) { // For each column pin...
pinMode(cPin[p], INPUT_PULLUP); // set the pinMode to INPUT_PULLUP (+3.3V / HIGH).
}
for (byte p = 0; p < sizeof(mPin); p++) { // For each column pin...
pinMode(mPin[p], OUTPUT); // Setting the row multiplexer pins to output.
}
Wire.setSDA(SDAPIN);
Wire.setSCL(SCLPIN);
pinMode(ROT_PIN_C, INPUT_PULLUP);
sendToLog("Pins mounted");
}
void setupGrid() {
for (byte i = 0; i < LED_COUNT; i++) {
h[i].coordRow = (i / 10);
h[i].coordCol = (2 * (i % 10)) + (h[i].coordRow & 1);
h[i].isCmd = 0;
h[i].note = UNUSED_NOTE;
h[i].btnState = 0;
};
for (byte c = 0; c < CMDCOUNT; c++) {
h[assignCmd[c]].isCmd = 1;
h[assignCmd[c]].note = CMDB + c;
};
sendToLog("initializing hex grid...");
applyLayout();
}
void setupLEDs() {
strip.begin(); // INITIALIZE NeoPixel strip object
strip.show(); // Turn OFF all pixels ASAP
sendToLog("LEDs started...");
resetHexLEDs();
}
void setupMenu() {
menu.setSplashDelay(0);
menu.init();
menuPageMain.addMenuItem(menuGotoTuning);
createTuningMenuItems();
menuPageTuning.addMenuItem(menuTuningBack);
menuPageMain.addMenuItem(menuGotoLayout);
createLayoutMenuItems();
menuPageLayout.addMenuItem(menuLayoutBack);
menuPageMain.addMenuItem(menuGotoScales);
createKeyMenuItems();
menuPageScales.addMenuItem(menuItemScaleLock);
createScaleMenuItems();
menuPageScales.addMenuItem(menuScalesBack);
menuPageMain.addMenuItem(menuGotoControl);
menuPageControl.addMenuItem(menuItemPBSpeed);
menuPageControl.addMenuItem(menuItemModSpeed);
menuPageControl.addMenuItem(menuItemVelSpeed);
menuPageControl.addMenuItem(menuControlBack);
menuPageMain.addMenuItem(menuItemTransposeSteps);
menuPageMain.addMenuItem(menuItemColor);
menuPageMain.addMenuItem(menuItemPlayback);
menuPageMain.addMenuItem(menuItemWaveform);
menuPageMain.addMenuItem(menuItemAnimate);
menuHome();
}
void setupGFX() {
u8g2.begin(); // Menu and graphics setup
u8g2.setBusClock(1000000); // Speed up display
u8g2.setContrast(defaultContrast); // Set contrast
sendToLog("U8G2 graphics initialized.");
}
void setupPiezo() {
gpio_set_function(TONEPIN, GPIO_FUNC_PWM); // set that pin as PWM
pwm_set_phase_correct(TONE_SL, true); // phase correct sounds better
pwm_set_wrap(TONE_SL, 254); // 0 - 254 allows 0 - 255 level
pwm_set_clkdiv(TONE_SL, 1.0f); // run at full clock speed
pwm_set_chan_level(TONE_SL, TONE_CH, 0); // initialize at zero to prevent whining sound
pwm_set_enabled(TONE_SL, true); // ENGAGE!
hw_set_bits(&timer_hw->inte, 1u << ALARM_NUM); // initialize the timer
irq_set_exclusive_handler(ALARM_IRQ, poll); // function to run every interrupt
irq_set_enabled(ALARM_IRQ, true); // ENGAGE!
timer_hw->alarm[ALARM_NUM] = timer_hw->timerawl + POLL_INTERVAL_IN_MICROSECONDS;
sendToLog("buzzer is ready.");
}
// ====== loop routines
void timeTracker() {
lapTime = runTime - loopTime;
loopTime = runTime; // Update previousTime variable to give us a reference point for next loop
runTime = timer_hw->timerawh;
runTime = (runTime << 32) + (timer_hw->timerawl); // Store the current time in a uniform variable for this program loop
}
void screenSaver() {
if (screenTime <= screenSaverTimeout) {
screenTime = screenTime + lapTime;
if (screenSaverOn) {
screenSaverOn = 0;
u8g2.setContrast(defaultContrast);
}
} else {
if (!screenSaverOn) {
screenSaverOn = 1;
u8g2.setContrast(1);
}
}
}
void readHexes() {
for (byte r = 0; r < ROWCOUNT; r++) { // Iterate through each of the row pins on the multiplexing chip.
for (byte d = 0; d < 4; d++) {
digitalWrite(mPin[d], (r >> d) & 1);
}
for (byte c = 0; c < COLCOUNT; c++) { // Now iterate through each of the column pins that are connected to the current row pin.
byte p = cPin[c]; // Hold the currently selected column pin in a variable.
pinMode(p, INPUT_PULLUP); // Set that row pin to INPUT_PULLUP mode (+3.3V / HIGH).
byte i = c + (r * COLCOUNT);
delayMicroseconds(6); // delay while column pin mode
bool didYouPressHex = (digitalRead(p) == LOW); // hex is pressed if it returns LOW. else not pressed
h[i].interpBtnPress(didYouPressHex);
if (h[i].btnState == 1) {
h[i].timePressed = runTime; // log the time
};
pinMode(p, INPUT); // Set the selected column pin back to INPUT mode (0V / LOW).
}
}
}
void actionHexes() {
for (byte i = 0; i < LED_COUNT; i++) { // For all buttons in the deck
switch (h[i].btnState) {
case 1: // just pressed
if (h[i].isCmd) {
cmdOn(i);
} else if (h[i].inScale || (!scaleLock)) {
playNote(i);
};
break;
case 2: // just released
if (h[i].isCmd) {
cmdOff(i);
} else if (h[i].inScale || (!scaleLock)) {
stopNote(i);
};
break;
case 3: // held
break;
default: // inactive
break;
};
};
}
void arpeggiate() {
if (playbackMode == BUZZ_ARPEGGIO) {
if (runTime - arpeggiateTime > arpeggiateLength) {
arpeggiateTime = runTime;
byte n = UNUSED_NOTE;
for (byte i = 1; i < LED_COUNT; i++) {
byte j = positiveMod(arpeggiatingNow + i, LED_COUNT);
if ((h[j].channel) && (!h[j].isCmd)) {
n = j;
break;
};
};
arpeggiatingNow = n;
if (n != UNUSED_NOTE) {
buzz(n, true);
};
};
};
}
void updateWheels() {
velWheel.setTargetValue();
bool upd = velWheel.updateValue(runTime);
if (upd) {
sendToLog("vel became " + std::to_string(velWheel.curValue));
}
if (toggleWheel) {
pbWheel.setTargetValue();
upd = pbWheel.updateValue(runTime);
if (upd) {
chgUniversalPB();
};
} else {
modWheel.setTargetValue();
upd = modWheel.updateValue(runTime);
if (upd) {
chgModulation();
};
};
}
void animateLEDs() {
for (byte i = 0; i < LED_COUNT; i++) {
h[i].animate = 0;
};
if (animationType) {
switch (animationType) {
case ANIMATE_STAR: case ANIMATE_SPLASH:
animateRadial();
break;
case ANIMATE_ORBIT:
animateOrbit();
break;
case ANIMATE_OCTAVE: case ANIMATE_BY_NOTE:
animateMirror();
break;
default:
break;
};
};
}
void lightUpLEDs() {
for (byte i = 0; i < LED_COUNT; i++) {
if (!(h[i].isCmd)) {
strip.setPixelColor(i,applyNotePixelColor(i));
}
};
resetVelocityLEDs();
resetWheelLEDs();
strip.show();
}
void dealWithRotary() {
if (menu.readyForKey()) {
rotaryIsClicked = digitalRead(ROT_PIN_C);
if (rotaryIsClicked > rotaryWasClicked) {
menu.registerKeyPress(GEM_KEY_OK);
screenTime = 0;
}
rotaryWasClicked = rotaryIsClicked;
if (rotaryKnobTurns != 0) {
for (byte i = 0; i < abs(rotaryKnobTurns); i++) {
menu.registerKeyPress(rotaryKnobTurns < 0 ? GEM_KEY_UP : GEM_KEY_DOWN);
}
rotaryKnobTurns = 0;
screenTime = 0;
}
}
}
void readMIDI() {
MIDI.read();
}
void keepTrackOfRotaryKnobTurns() {
switch (rotary.process()) {
case DIR_CW: rotaryKnobTurns++; break;
case DIR_CCW: rotaryKnobTurns--; break;
}
rotaryKnobTurns = (
(rotaryKnobTurns > maxKnobTurns) ? maxKnobTurns : (
(rotaryKnobTurns < -maxKnobTurns) ? -maxKnobTurns : rotaryKnobTurns
)
);
}
// ====== setup() and loop()
void setup() {
testDiagnostics(); // Print diagnostic troubleshooting information to serial monitor
#if (defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040))
TinyUSB_Device_Init(0); // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
#endif
setupMIDI();
setupFileSystem();
setupPins();
setupGrid();
setupLEDs();
setupGFX();
setupMenu();
for (byte i = 0; i < 5 && !TinyUSBDevice.mounted(); i++) {
delay(1); // wait until device mounted, maybe
};
}
void setup1() { // set up on second core
setupPiezo();
}
void loop() { // run on first core
timeTracker(); // Time tracking functions
screenSaver(); // Reduces wear-and-tear on OLED panel
readHexes(); // Read and store the digital button states of the scanning matrix
actionHexes(); // actions on hexes
arpeggiate(); // arpeggiate the buzzer
updateWheels(); // deal with the pitch/mod wheel
animateLEDs(); // deal with animations
lightUpLEDs(); // refresh LEDs
dealWithRotary(); // deal with menu
readMIDI();
}
void loop1() { // run on second core
keepTrackOfRotaryKnobTurns();
}
|