Firmware for HexBoard MIDI controller
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// Hardware Information:
// Generic RP2040 running at 133MHz with 16MB of flash
// https://github.com/earlephilhower/arduino-pico
// (Additional boards manager URL: https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json)
// Tools > USB Stack > (Adafruit TinyUSB)
// Sketch > Export Compiled Binary
//
// Brilliant resource for dealing with hexagonal coordinates. https://www.redblobgames.com/grids/hexagons/
// Might be useful for animations and stuff like that.

// Menu library documentation https://github.com/Spirik/GEM

#include <Arduino.h>
#include <Adafruit_TinyUSB.h>
#include "LittleFS.h"
#include <MIDI.h>
#include <Adafruit_NeoPixel.h>
#define GEM_DISABLE_GLCD
#include <GEM_u8g2.h>
#include <Wire.h>
#include <Rotary.h>

// USB MIDI object //
Adafruit_USBD_MIDI usb_midi;
// Create a new instance of the Arduino MIDI Library,
// and attach usb_midi as the transport.
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI);

// LED SETUP //
#define LED_PIN 22
#define LED_COUNT 140
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_RGB + NEO_KHZ800);
int stripBrightness = 110;
int defaultBrightness = 70;
int dimBrightness = 20;
int pressedBrightness = 255;


// ENCODER SETUP //
#define ROTA 20  // Rotary encoder A
#define ROTB 21  // Rotary encoder B
Rotary rotary = Rotary(ROTA, ROTB);
const int encoderClick = 24;
int encoderState = 0;
int encoderLastState = 1;
int8_t encoder_val = 0;
uint8_t encoder_state;

// Create an instance of the U8g2 graphics library.
U8G2_SH1106_128X64_NONAME_F_HW_I2C u8g2(U8G2_R2, /* reset=*/U8X8_PIN_NONE);
int screenBrightness = stripBrightness / 2;

//
// Button matrix and LED locations
// Portrait orientation top view:
//            9   8   7   6   5   4   3   2   1
//         20  19  18  17  16  15  14  13  12  11
//           29  28  27  26  25  24  23  22  21
//         40  39  38  37  36  35  34  33  32  31
//           49  48  47  46  45  44  43  42  41
//         60  59  58  57  56  55  54  53  52  51
//   10      69  68  67  66  65  64  63  62  61
// 30      80  79  78  77  76  75  74  73  72  71
//   50      89  88  87  86  85  84  83  82  81
// 70     100 99  98  97  96  95  94  93  92  91
//   90     109 108 107 106 105 104 103 102 101
//110     120 119 118 117 116 115 114 113 112 111
//  130     129 128 127 126 125 124 123 122 121
//        140 139 138 137 136 135 134 133 132 131

// DIAGNOSTICS //
// 1 = Full button test (1 and 0)
// 2 = Button test (button number)
// 3 = MIDI output test
// 4 = Loop timing readout in milliseconds
int diagnostics = 0;

// BUTTON MATRIX PINS //
const byte columns[] = { 14, 15, 13, 12, 11, 10, 9, 8, 7, 6 };  // Column pins in order from right to left
const int m1p = 4;                                              // Multiplexing chip control pins
const int m2p = 5;
const int m4p = 2;
const int m8p = 3;
// 16 & 17 reserved for lights.
const byte columnCount = sizeof(columns);          // The number of columns in the matrix
const byte rowCount = 14;                          // The number of rows in the matrix
const byte elementCount = columnCount * rowCount;  // The number of elements in the matrix

// Since MIDI only uses 7 bits, we can give greater values special meanings.
// (see commandPress)
const int CMDB_1 = 128;
const int CMDB_2 = 129;
const int CMDB_3 = 130;
const int CMDB_4 = 131;
const int CMDB_5 = 132;
const int CMDB_6 = 133;
const int CMDB_7 = 134;
const int UNUSED = 255;

// LED addresses for CMD buttons.
const byte cmdBtn1 = 10 - 1;
const byte cmdBtn2 = 30 - 1;
const byte cmdBtn3 = 50 - 1;
const byte cmdBtn4 = 70 - 1;
const byte cmdBtn5 = 90 - 1;
const byte cmdBtn6 = 110 - 1;
const byte cmdBtn7 = 130 - 1;

// MIDI NOTE LAYOUTS //
#define ROW_FLIP(x, ix, viii, vii, vi, v, iv, iii, ii, i) i, ii, iii, iv, v, vi, vii, viii, ix, x
//hacky macro because I (Jared) messed up the board layout - I'll do better next time! xD

// MIDI note layout tables
const byte wickiHaydenLayout[elementCount] = {
  ROW_FLIP(CMDB_1, 90, 92, 94, 96, 98, 100, 102, 104, 106),
  ROW_FLIP(83, 85, 87, 89, 91, 93, 95, 97, 99, 101),
  ROW_FLIP(CMDB_2, 78, 80, 82, 84, 86, 88, 90, 92, 94),
  ROW_FLIP(71, 73, 75, 77, 79, 81, 83, 85, 87, 89),
  ROW_FLIP(CMDB_3, 66, 68, 70, 72, 74, 76, 78, 80, 82),
  ROW_FLIP(59, 61, 63, 65, 67, 69, 71, 73, 75, 77),
  ROW_FLIP(CMDB_4, 54, 56, 58, 60, 62, 64, 66, 68, 70),
  ROW_FLIP(47, 49, 51, 53, 55, 57, 59, 61, 63, 65),
  ROW_FLIP(CMDB_5, 42, 44, 46, 48, 50, 52, 54, 56, 58),
  ROW_FLIP(35, 37, 39, 41, 43, 45, 47, 49, 51, 53),
  ROW_FLIP(CMDB_6, 30, 32, 34, 36, 38, 40, 42, 44, 46),
  ROW_FLIP(23, 25, 27, 29, 31, 33, 35, 37, 39, 41),
  ROW_FLIP(CMDB_7, 18, 20, 22, 24, 26, 28, 30, 32, 34),
  ROW_FLIP(11, 13, 15, 17, 19, 21, 23, 25, 27, 29)
};
const byte harmonicTableLayout[elementCount] = {
  ROW_FLIP(CMDB_1, 83, 76, 69, 62, 55, 48, 41, 34, 27),
  ROW_FLIP(86, 79, 72, 65, 58, 51, 44, 37, 30, 23),
  ROW_FLIP(CMDB_2, 82, 75, 68, 61, 54, 47, 40, 33, 26),
  ROW_FLIP(85, 78, 71, 64, 57, 50, 43, 36, 29, 22),
  ROW_FLIP(CMDB_3, 81, 74, 67, 60, 53, 46, 39, 32, 25),
  ROW_FLIP(84, 77, 70, 63, 56, 49, 42, 35, 28, 21),
  ROW_FLIP(CMDB_4, 80, 73, 66, 59, 52, 45, 38, 31, 24),
  ROW_FLIP(83, 76, 69, 62, 55, 48, 41, 34, 27, 20),
  ROW_FLIP(CMDB_5, 79, 72, 65, 58, 51, 44, 37, 30, 23),
  ROW_FLIP(82, 75, 68, 61, 54, 47, 40, 33, 26, 19),
  ROW_FLIP(CMDB_6, 78, 71, 64, 57, 50, 43, 36, 29, 22),
  ROW_FLIP(81, 74, 67, 60, 53, 46, 39, 32, 25, 18),
  ROW_FLIP(CMDB_7, 77, 70, 63, 56, 49, 42, 35, 28, 21),
  ROW_FLIP(80, 73, 66, 59, 52, 45, 38, 31, 24, 17)
};
const byte gerhardLayout[elementCount] = {
  ROW_FLIP(CMDB_1, 74, 73, 72, 71, 70, 69, 68, 67, 66),
  ROW_FLIP(71, 70, 69, 68, 67, 66, 65, 64, 63, 62),
  ROW_FLIP(CMDB_2, 67, 66, 65, 64, 63, 62, 61, 60, 59),
  ROW_FLIP(64, 63, 62, 61, 60, 59, 58, 57, 56, 55),
  ROW_FLIP(CMDB_3, 60, 59, 58, 57, 56, 55, 54, 53, 52),
  ROW_FLIP(57, 56, 55, 54, 53, 52, 51, 50, 49, 48),
  ROW_FLIP(CMDB_4, 53, 52, 51, 50, 49, 48, 47, 46, 45),
  ROW_FLIP(50, 49, 48, 47, 46, 45, 44, 43, 42, 41),
  ROW_FLIP(CMDB_5, 46, 45, 44, 43, 42, 41, 40, 39, 38),
  ROW_FLIP(43, 42, 41, 40, 39, 38, 37, 36, 35, 34),
  ROW_FLIP(CMDB_6, 39, 38, 37, 36, 35, 34, 33, 32, 31),
  ROW_FLIP(36, 35, 34, 33, 32, 31, 30, 29, 28, 27),
  ROW_FLIP(CMDB_7, 32, 31, 30, 29, 28, 27, 26, 25, 24),
  ROW_FLIP(29, 28, 27, 26, 25, 24, 23, 22, 21, 20)
};
const byte *currentLayout = wickiHaydenLayout;

const unsigned int pitches[128] = {
  16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31,                                  // Octave 0
  33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62,                                  // Octave 1
  65, 69, 73, 78, 82, 87, 93, 98, 104, 110, 117, 123,                              // Octave 2
  131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247,                      // Octave 3
  262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494,                      // Octave 4
  523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988,                      // Octave 5
  1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976,          // Octave 6
  2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951,          // Octave 7
  4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902,          // Octave 8
  8372, 8870, 9397, 9956, 10548, 11175, 11840, 12544, 13290, 14080, 14917, 15804,  //9
  16744,                                                                           // C10
  17740,                                                                           // C#10
  18795,                                                                           // D10
  19912,                                                                           // D#10
  21096,                                                                           // E10
  22350,                                                                           // F10
  23680                                                                            // F#10
};
#define TONEPIN 23

// Global time variables
unsigned long currentTime = 0;   // Program loop consistent variable for time in milliseconds since power on
unsigned long previousTime = 0;  // Used to check speed of the loop in diagnostics mode 4
int loopTime = 0;                // Used to keep track of how long each loop takes. Useful for rate-limiting.
int screenTime = 0;              // Used to dim screen after a set time to prolong the lifespan of the OLED

// Pitch bend variables
int pitchBendNeutral = 0;   // The center position for the pitch bend "wheel." Could be adjusted for global tuning?
int pitchBendTime = 0;      // Used to rate-limit pitch bend updates
int pitchBendPosition = 0;  // The actual pitch bend variable used for sending MIDI
int pitchBendSpeed = 2048;  // The ammount the pitch bend moves every time pitchBendTime hits it's limit.

// Variables for holding digital button states and activation times
byte activeButtons[elementCount];               // Array to hold current note button states
byte previousActiveButtons[elementCount];       // Array to hold previous note button states for comparison
unsigned long activeButtonsTime[elementCount];  // Array to track last note button activation time for debounce

// Variables for sequencer mode
typedef struct {
  bool steps[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
  bool bank = 0;
  int state = 0;// TODO: change to enum: normal, mute, solo, mute&solo
} Lane;
Lane lanes[7];

bool sequencerMode=1;

// MENU SYSTEM SETUP //
// Create menu page object of class GEMPage. Menu page holds menu items (GEMItem) and represents menu level.
// Menu can have multiple menu pages (linked to each other) with multiple menu items each
GEMPage menuPageMain("HexBoard MIDI Controller");
GEMPage menuPageLayout("Layout");

GEMItem menuItemLayout("Layout", menuPageLayout);
void wickiHayden();  //Forward declarations
void harmonicTable();
void gerhard();
GEMItem menuItemWickiHayden("Wicki-Hayden", wickiHayden);
GEMItem menuItemHarmonicTable("Harmonic Table", harmonicTable);
GEMItem menuItemGerhard("Gerhard", gerhard);

void setLayoutLEDs();  //Forward declaration
byte key = 0;
SelectOptionByte selectKeyOptions[] = { { "C", 0 }, { "C#", 1 }, { "D", 2 }, { "D#", 3 }, { "E", 4 }, { "F", 5 }, { "F#", 6 }, { "G", 7 }, { "G#", 8 }, { "A", 9 }, { "A#", 10 }, { "B", 11 } };
GEMSelect selectKey(sizeof(selectKeyOptions) / sizeof(SelectOptionByte), selectKeyOptions);
GEMItem menuItemKey("Key:", key, selectKey, setLayoutLEDs);

byte scale = 0;
SelectOptionByte selectScaleOptions[] = { { "NONE", 0 }, { "Major", 1 }, { "HarMin", 2 }, { "MelMin", 3 }, { "NatMin", 4 }, { "NONE", 5 }, { "NONE", 6 }, { "NONE", 7 }, { "NONE", 8 }, { "NONE", 9 }, { "NONE", 10 }, { "NONE", 11 } };
GEMSelect selectScale(sizeof(selectScaleOptions) / sizeof(SelectOptionByte), selectScaleOptions);
GEMItem menuItemScale("Scale:", scale, selectScale, setLayoutLEDs);

int transpose = 0;
SelectOptionInt selectTransposeOptions[] = {
  { "-12", -12 }, { "-11", -11 }, { "-10", -10 }, { "-9", -9 }, { "-8", -8 }, { "-7", -7 }, { "-6", -6 }, { "-5", -5 }, { "-4", -4 }, { "-3", -3 }, { "-2", -2 }, { "-1", -1 }, { "0", 0 }, { "+1", 1 }, { "+2", 2 }, { "+3", 3 }, { "+4", 4 }, { "+5", 5 }, { "+6", 6 }, { "+7", 7 }, { "+8", 8 }, { "+9", 9 }, { "+10", 10 }, { "+11", 11 }, { "+12", 12 }
};
GEMSelect selectTranspose(sizeof(selectTransposeOptions) / sizeof(SelectOptionByte), selectTransposeOptions);
void validateTranspose();  // Forward declaration
GEMItem menuItemTranspose("Transpose:", transpose, selectTranspose, validateTranspose);

void resetPitchBend();
SelectOptionInt selectBendSpeedOptions[] = { { "SO SLOW", 256 }, { "Slow", 512 }, { "Medium", 1024 }, { "Fast", 2048 }, { "Cheetah", 4096 } };
GEMSelect selectBendSpeed(sizeof(selectBendSpeedOptions) / sizeof(SelectOptionInt), selectBendSpeedOptions);
GEMItem menuItemBendSpeed("Pitch Bend:", pitchBendSpeed, selectBendSpeed, resetPitchBend);

void setBrightness();  //Forward declaration
SelectOptionByte selectBrightnessOptions[] = { { "Dim", 30 }, { "Low", 70 }, { "Medium", 110 }, { "High", 160 }, { "Highest", 210 }, { "MAX(!!)", 255 } };
GEMSelect selectBrightness(sizeof(selectBrightnessOptions) / sizeof(SelectOptionByte), selectBrightnessOptions);
GEMItem menuItemBrightness("Brightness:", stripBrightness, selectBrightness, setBrightness);

bool buzzer = false;  // For enabling built-in buzzer for sound generation without a computer
GEMItem menuItemBuzzer("Buzzer:", buzzer);


// Create menu object of class GEM_u8g2. Supply its constructor with reference to u8g2 object we created earlier
byte menuItemHeight = 10;
byte menuPageScreenTopOffset = 10;
byte menuValuesLeftOffset = 78;
GEM_u8g2 menu(u8g2, GEM_POINTER_ROW, GEM_ITEMS_COUNT_AUTO, menuItemHeight, menuPageScreenTopOffset, menuValuesLeftOffset);


// MIDI channel assignment
byte midiChannel = 1;  // Current MIDI channel (changed via user input)

// Velocity levels
byte midiVelocity = 100;  // Default velocity

// END SETUP SECTION
// ------------------------------------------------------------------------------------------------------------------------------------------------------------

void setup() {

#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
  // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
  TinyUSB_Device_Init(0);
#endif
  usb_midi.setStringDescriptor("HexBoard MIDI");
  // Initialize MIDI, and listen to all MIDI channels
  // This will also call usb_midi's begin()
  MIDI.begin(MIDI_CHANNEL_OMNI);

  Wire.setSDA(16);
  Wire.setSCL(17);

  pinMode(encoderClick, INPUT_PULLUP);

  Serial.begin(115200);  // Set serial to make uploads work without bootsel button

  LittleFSConfig cfg;       // Configure file system defaults
  cfg.setAutoFormat(true);  // Formats file system if it cannot be mounted.
  LittleFS.setConfig(cfg);
  LittleFS.begin();  // Mounts file system.
  if (!LittleFS.begin()) {
    Serial.println("An Error has occurred while mounting LittleFS");
  }


  // Set pinModes for the digital button matrix.
  for (int pinNumber = 0; pinNumber < columnCount; pinNumber++)  // For each column pin...
  {
    pinMode(columns[pinNumber], INPUT_PULLUP);  // set the pinMode to INPUT_PULLUP (+3.3V / HIGH).
  }
  pinMode(m1p, OUTPUT);  // Setting the row multiplexer pins to output.
  pinMode(m2p, OUTPUT);
  pinMode(m4p, OUTPUT);
  pinMode(m8p, OUTPUT);

  strip.begin();                         // INITIALIZE NeoPixel strip object
  strip.show();                          // Turn OFF all pixels ASAP
  strip.setBrightness(stripBrightness);  // Set BRIGHTNESS (max = 255)
  setCMD_LEDs();
  strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, pressedBrightness));
  setLayoutLEDs();

  u8g2.begin();  //Menu and graphics setup
  u8g2.setContrast(stripBrightness / 2);
  menu.setSplashDelay(0);
  menu.init();
  setupMenu();
  menu.drawMenu();

  // wait until device mounted, maybe
  for (int i = 0; i < 5 && !TinyUSBDevice.mounted(); i++) delay(1);

  // Print diagnostic troubleshooting information to serial monitor
  diagnosticTest();
}

void setup1() {  //Second core exclusively runs encoder
  //pinMode(ROTA, INPUT_PULLUP);
  //pinMode(ROTB, INPUT_PULLUP);
  //encoder_init();
}

// ------------------------------------------------------------------------------------------------------------------------------------------------------------
// START LOOP SECTION
void loop() {

  // Time tracking function
  timeTracker();

  // Reduces wear-and-tear on OLED panel
  screenSaver();

  // Read and store the digital button states of the scanning matrix
  readDigitalButtons();

  if(sequencerMode){
    // Cause newpresses to change stuff
    sequencerToggleThingies();

    // If it's time to play notes, play them
    sequencerMaybePlayNotes();
  }else{
    // Act on those buttons
    playNotes();

    // Pitch bend stuff
    pitchBend();

    // Held buttons
    heldButtons();
  }

  // Do the LEDS
  strip.show();

  // Read any new MIDI messages
  MIDI.read();

  // Read menu navigation functions
  menuNavigation();
}

void loop1() {
  rotate();  // Reads the encoder on the second core to avoid missed steps
  //readEncoder();
}
// END LOOP SECTION
// ------------------------------------------------------------------------------------------------------------------------------------------------------------


// ------------------------------------------------------------------------------------------------------------------------------------------------------------
// START FUNCTIONS SECTION

void timeTracker() {
  loopTime = currentTime - previousTime;
  if (diagnostics == 4) {  //Print out the time it takes to run each loop
    Serial.println(loopTime);
  }
  // Update previouTime variable to give us a reference point for next loop
  previousTime = currentTime;
  // Store the current time in a uniform variable for this program loop
  currentTime = millis();
}

void diagnosticTest() {
  if (diagnostics > 0) {
    Serial.println("Zach was here");
  }
}

void commandPress(byte command) {
  if (command == CMDB_1) {
    midiVelocity = 100;
    setCMD_LEDs();
    strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, pressedBrightness));
  }
  if (command == CMDB_2) {
    midiVelocity = 60;
    setCMD_LEDs();
    strip.setPixelColor(cmdBtn2, strip.ColorHSV(65536 / 3, 255, pressedBrightness));
  }
  if (command == CMDB_3) {
    midiVelocity = 20;
    setCMD_LEDs();
    strip.setPixelColor(cmdBtn3, strip.ColorHSV(65536 / 2, 255, pressedBrightness));
  }
  if (command == CMDB_4) {
  }
  if (command == CMDB_5) {
  }
  if (command == CMDB_6) {
  }
  if (command == CMDB_7) {
  }
}
void commandRelease(byte command) {
}

void pitchBend() {  //todo: possibly add a check where if no notes are active, make the pitch bend instant. Add LED updates.

  if (activeButtons[89] && !activeButtons[109] && !activeButtons[129]) {  // Whole pitch up
    pitchBendTime = pitchBendTime + loopTime;
    if (pitchBendTime >= 20) {
      pitchBendTime = 0;
      if (pitchBendPosition < 8192) {
        pitchBendPosition = pitchBendPosition + pitchBendSpeed;
        if (pitchBendPosition > 8191) {  // This is a hack to prevent going over the maximum number (8191) that MIDI pitchbend can go without messing up my math.
          MIDI.sendPitchBend(8191, midiChannel);
        }
        if (pitchBendPosition <= 8191) {
          MIDI.sendPitchBend(pitchBendPosition, midiChannel);
        }
      }
    }
  }
  if (activeButtons[89] && activeButtons[109] && !activeButtons[129]) {  // Half pitch up
    pitchBendTime = pitchBendTime + loopTime;
    if (pitchBendTime >= 20) {
      pitchBendTime = 0;
      if (pitchBendPosition > 4096) {
        pitchBendPosition = pitchBendPosition - pitchBendSpeed;
        MIDI.sendPitchBend(pitchBendPosition, midiChannel);
      }
      if (pitchBendPosition < 4096) {
        pitchBendPosition = pitchBendPosition + pitchBendSpeed;
        MIDI.sendPitchBend(pitchBendPosition, midiChannel);
      }
    }
  }
  if (!activeButtons[89] && activeButtons[109] && activeButtons[129]) {  // Half pitch down
    pitchBendTime = pitchBendTime + loopTime;
    if (pitchBendTime >= 20) {
      pitchBendTime = 0;
      if (pitchBendPosition > -4096) {
        pitchBendPosition = pitchBendPosition - pitchBendSpeed;
        MIDI.sendPitchBend(pitchBendPosition, midiChannel);
      }
      if (pitchBendPosition < -4096) {
        pitchBendPosition = pitchBendPosition + pitchBendSpeed;
        MIDI.sendPitchBend(pitchBendPosition, midiChannel);
      }
    }
  }
  if (!activeButtons[89] && !activeButtons[109] && activeButtons[129]) {  // Whole pitch down
    pitchBendTime = pitchBendTime + loopTime;
    if (pitchBendTime >= 20) {
      pitchBendTime = 0;
      if (pitchBendPosition > -8192) {
        pitchBendPosition = pitchBendPosition - pitchBendSpeed;
        MIDI.sendPitchBend(pitchBendPosition, midiChannel);
      }
    }
  }
  if (!activeButtons[89] && !activeButtons[129]) {  // Neutral pitch
    if (pitchBendTime != 200) {
      pitchBendTime = pitchBendTime + loopTime;
      if (pitchBendTime >= 20) {
        pitchBendTime = 0;
        if (pitchBendPosition > 0) {
          pitchBendPosition = pitchBendPosition - pitchBendSpeed;
          MIDI.sendPitchBend(pitchBendPosition, midiChannel);
        }
        if (pitchBendPosition < 0) {
          pitchBendPosition = pitchBendPosition + pitchBendSpeed;
          MIDI.sendPitchBend(pitchBendPosition, midiChannel);
        }
      }
      if (pitchBendPosition == 0) {
        pitchBendTime = 200;
      }
    }
  }
  if (activeButtons[89] && activeButtons[109] && activeButtons[129]) {  // Neutral pitch case two where all buttons are pressed - kinda hacky
    if (pitchBendTime != 200) {
      pitchBendTime = pitchBendTime + loopTime;
      if (pitchBendTime >= 20) {
        pitchBendTime = 0;
        if (pitchBendPosition > 0) {
          pitchBendPosition = pitchBendPosition - pitchBendSpeed;
          MIDI.sendPitchBend(pitchBendPosition, midiChannel);
        }
        if (pitchBendPosition < 0) {
          pitchBendPosition = pitchBendPosition + pitchBendSpeed;
          MIDI.sendPitchBend(pitchBendPosition, midiChannel);
        }
      }
      if (pitchBendPosition == 0) {
        pitchBendTime = 200;
      }
    }
  }
  if (pitchBendPosition > 0) {
    strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, ((pitchBendPosition / 32) - 1)));
    strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, (-pitchBendPosition / 32)));
    strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, 0));
  }
  if (pitchBendPosition == 0) {
    strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, 0));
    strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, 255));
    strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, 0));
  }
  if (pitchBendPosition < 0) {
    strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, 0));
    strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, (pitchBendPosition / 32)));
    strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, ((-pitchBendPosition / 32) - 1)));
  }
}

// BUTTONS //
void readDigitalButtons() {
  if (diagnostics == 1) {
    Serial.println();
  }
  // Button Deck
  for (int rowIndex = 0; rowIndex < rowCount; rowIndex++)  // Iterate through each of the row pins on the multiplexing chip.
  {
    digitalWrite(m1p, rowIndex & 1);
    digitalWrite(m2p, (rowIndex & 2) >> 1);
    digitalWrite(m4p, (rowIndex & 4) >> 2);
    digitalWrite(m8p, (rowIndex & 8) >> 3);
    for (byte columnIndex = 0; columnIndex < columnCount; columnIndex++)  // Now iterate through each of the column pins that are connected to the current row pin.
    {
      byte columnPin = columns[columnIndex];                              // Hold the currently selected column pin in a variable.
      pinMode(columnPin, INPUT_PULLUP);                                   // Set that row pin to INPUT_PULLUP mode (+3.3V / HIGH).
      byte buttonNumber = columnIndex + (rowIndex * columnCount);         // Assign this location in the matrix a unique number.
      delayMicroseconds(10);                                              // Delay to give the pin modes time to change state (false readings are caused otherwise).
      previousActiveButtons[buttonNumber] = activeButtons[buttonNumber];  // Track the "previous" variable for comparison.
      byte buttonState = digitalRead(columnPin);                          // (don't)Invert reading due to INPUT_PULLUP, and store the currently selected pin state.
      if (buttonState == LOW) {
        if (diagnostics == 1) {
          Serial.print("1");
        } else if (diagnostics == 2) {
          Serial.println(buttonNumber);
        }
        if (!previousActiveButtons[buttonNumber]) {
          // newpress time
          activeButtonsTime[buttonNumber] = millis();
        }
        activeButtons[buttonNumber] = 1;
      } else {
        // Otherwise, the button is inactive, write a 0.
        if (diagnostics == 1) {
          Serial.print("0");
        }
        activeButtons[buttonNumber] = 0;
      }
      // Set the selected column pin back to INPUT mode (0V / LOW).
      pinMode(columnPin, INPUT);
    }
  }
}

void playNotes() {
  for (int i = 0; i < elementCount; i++)  // For all buttons in the deck
  {
    if (activeButtons[i] != previousActiveButtons[i])  // If a change is detected
    {
      if (activeButtons[i] == 1)  // If the button is active (newpress)
      {
        if (currentLayout[i] < 128) {
          strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, pressedBrightness));
          noteOn(midiChannel, (currentLayout[i] + transpose) % 128, midiVelocity);
        } else {
          commandPress(currentLayout[i]);
        }
      } else {
        // If the button is inactive (released)
        if (currentLayout[i] < 128) {
          setLayoutLED(i);
          noteOff(midiChannel, (currentLayout[i] + transpose) % 128, 0);
        } else {
          commandRelease(currentLayout[i]);
        }
      }
    }
  }
}

void heldButtons() {
  for (int i = 0; i < elementCount; i++) {
    if (activeButtons[i]) {
      //if (
    }
  }
}

void sequencerToggleThingies() {
  // For all buttons in the deck
  for (int i = 0; i < elementCount; i++) {
    // Some change was made
    if (activeButtons[i] != previousActiveButtons[i]){
      // newpress
      if (activeButtons[i]){
        int stripN = i / 20;
        int step = map2step(i % 20);
        if (step >= 0){
          int offset = lanes[stripN].bank*16;
          lanes[stripN].steps[step+offset] = !lanes[stripN].steps[step+offset];
          int color = 0;
          if(lanes[stripN].steps[step+offset])color = 255;
          strip.setPixelColor(i, color, color, color);

        }
      }
    }
  }
}
// TODO: Redefine this for hexboard v2
int map2step(int i){
  if(i >= 10){
    return (19-i)*2;
  }
  if (i<=8) {
    return ((8-i)*2)+1;
  }
  return -1;
}

void sequencerMaybePlayNotes(){
  
}

// Return the first note that is currently held.
byte getHeldNote() {
  for (int i = 0; i < elementCount; i++) {
    if (activeButtons[i]) {
      if (currentLayout[i] < 128) {
        return (currentLayout[i] + transpose) % 128;
      }
    }
  }
  return 128;
}

// MIDI AND OTHER OUTPUTS //
// Send Note On
void noteOn(byte channel, byte pitch, byte velocity) {
  MIDI.sendNoteOn(pitch, velocity, channel);
  if (diagnostics == 3) {
    Serial.print(pitch);
    Serial.print(", ");
    Serial.print(velocity);
    Serial.print(", ");
    Serial.println(channel);
  }
  if (buzzer) {
    tone(TONEPIN, pitches[pitch]);
  }
}
// Send Note Off
void noteOff(byte channel, byte pitch, byte velocity) {
  MIDI.sendNoteOff(pitch, velocity, channel);
  noTone(TONEPIN);
  if (buzzer) {
    byte anotherPitch = getHeldNote();
    if (anotherPitch < 128) {
      tone(TONEPIN, pitches[anotherPitch]);
    } else {
    }
  }
}

// LEDS //
void setCMD_LEDs() {
  strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, dimBrightness));
  strip.setPixelColor(cmdBtn2, strip.ColorHSV(65536 / 3, 255, dimBrightness));
  strip.setPixelColor(cmdBtn3, strip.ColorHSV(65536 / 2, 255, dimBrightness));
  strip.setPixelColor(cmdBtn4, strip.ColorHSV(0, 255, defaultBrightness));
}

void setLayoutLEDs() {
  for (int i = 0; i < elementCount; i++) {
    if (currentLayout[i] <= 127) {
      setLayoutLED(i);
    }
  }
}
void setLayoutLED(int i) {
  strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, defaultBrightness));
  // Scale highlighting
  if (scale == 0) {  //NONE
    switch ((currentLayout[i] - key + transpose) % 12) {
      default: break;  // No changes since there is no scale selected
    }
  }
  if (scale == 1) {  //Major
    switch ((currentLayout[i] - key + transpose) % 12) {
      // If it is one of the dark keys, fall through to case 10.
      case 1:
      case 3:
      case 6:
      case 8:
      case 10: strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, dimBrightness)); break;
      // Otherwise it was a highlighted key. Do nothing
      default: break;
    }
  }
  if (scale == 2) {  //HarMin
    switch ((currentLayout[i] - key + transpose) % 12) {
      // If it is one of the dark keys, fall through to case 10.
      case 1:
      case 4:
      case 6:
      case 9:
      case 10: strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, dimBrightness)); break;
      // Otherwise it was a highlighted key. Do nothing
      default: break;
    }
  }
  if (scale == 3) {  //MelMin
    switch ((currentLayout[i] - key + transpose) % 12) {
      // If it is one of the dark keys, fall through to case 10.
      case 1:
      case 4:
      case 6:
      case 8:
      case 10: strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, dimBrightness)); break;
      // Otherwise it was a highlighted key. Do nothing
      default: break;
    }
  }
  if (scale == 4) {  //NatMin
    switch ((currentLayout[i] - key + transpose) % 12) {
      // If it is one of the dark keys, fall through to case 10.
      case 1:
      case 4:
      case 6:
      case 9:
      case 11: strip.setPixelColor(i, strip.ColorHSV(((currentLayout[i] - key + transpose) % 12) * 5006, 255, dimBrightness)); break;
      // Otherwise it was a highlighted key. Do nothing
      default: break;
    }
  }
}

// ENCODER //
// rotary encoder pin change interrupt handler
void readEncoder() {
  encoder_state = (encoder_state << 4) | (digitalRead(ROTB) << 1) | digitalRead(ROTA);
  Serial.println(encoder_val);
  switch (encoder_state) {
    case 0x23: encoder_val++; break;
    case 0x32: encoder_val--; break;
    default: break;
  }
}
void rotate() {
  unsigned char result = rotary.process();
  if (result == DIR_CW) {
    encoder_val++;
  } else if (result == DIR_CCW) {
    encoder_val--;
  }
}
// rotary encoder init
void encoder_init() {
  // enable pin change interrupts
  attachInterrupt(digitalPinToInterrupt(ROTA), readEncoder, RISING);
  attachInterrupt(digitalPinToInterrupt(ROTB), readEncoder, RISING);
  encoder_state = (digitalRead(ROTB) << 1) | digitalRead(ROTA);
  interrupts();
}

// MENU //
void menuNavigation() {
  if (menu.readyForKey()) {
    encoderState = digitalRead(encoderClick);
    if (encoderState > encoderLastState) {
      menu.registerKeyPress(GEM_KEY_OK);
      screenTime = 0;
    }
    encoderLastState = encoderState;
    if (encoder_val < 0) {
      menu.registerKeyPress(GEM_KEY_UP);
      encoder_val = 0;
      screenTime = 0;
    }
    if (encoder_val > 0) {
      menu.registerKeyPress(GEM_KEY_DOWN);
      encoder_val = 0;
      screenTime = 0;
    }
  }
}

void setupMenu() {
  // Add menu items to Main menu page
  menuPageMain.addMenuItem(menuItemLayout);
  menuPageMain.addMenuItem(menuItemKey);
  menuPageMain.addMenuItem(menuItemScale);
  menuPageMain.addMenuItem(menuItemTranspose);
  menuPageMain.addMenuItem(menuItemBendSpeed);
  menuPageMain.addMenuItem(menuItemBrightness);
  menuPageMain.addMenuItem(menuItemBuzzer);
  // Add menu items to Layout Select page
  menuPageLayout.addMenuItem(menuItemWickiHayden);
  menuPageLayout.addMenuItem(menuItemHarmonicTable);
  menuPageLayout.addMenuItem(menuItemGerhard);
  // Specify parent menu page for the Settings menu page
  menuPageLayout.setParentMenuPage(menuPageMain);

  // Add menu page to menu and set it as current
  menu.setMenuPageCurrent(menuPageMain);
}

void wickiHayden() {
  currentLayout = wickiHaydenLayout;
  setLayoutLEDs();
  //u8g2.setDisplayRotation(U8G2_R2); IMPLEMENT ROTATION WITH NEXT HARDWARE REVISION USING 128*128 SCREEN
  menu.setMenuPageCurrent(menuPageMain);
  menu.drawMenu();
}
void harmonicTable() {
  currentLayout = harmonicTableLayout;
  setLayoutLEDs();
  //u8g2.setDisplayRotation(U8G2_R1);
  menu.setMenuPageCurrent(menuPageMain);
  menu.drawMenu();
}
void gerhard() {
  currentLayout = gerhardLayout;
  setLayoutLEDs();
  //u8g2.setDisplayRotation(U8G2_R1);
  menu.setMenuPageCurrent(menuPageMain);
  menu.drawMenu();
}

void setBrightness() {
  strip.setBrightness(stripBrightness);
  setLayoutLEDs();
}

// Validation routine of transpose variable
void validateTranspose() {
  //Need to add some code here to make sure transpose doesn't get out of hand
  /*something like
  if ((transpose + LOWEST NOTE IN ARRAY) < 0) {
    transpose = 0;
  } */
  setLayoutLEDs();
}

//Resets pitch bend to zero to avoid glitches when changing speed mid-bend
void resetPitchBend() {
  pitchBendPosition = pitchBendNeutral;
  MIDI.sendPitchBend(pitchBendPosition, midiChannel);
}

void screenSaver() {
  if (screenTime <= 10000) {
    screenTime = screenTime + loopTime;
    if (screenBrightness != stripBrightness / 2) {
      screenBrightness = stripBrightness / 2;
      u8g2.setContrast(screenBrightness);
    }
  }
  if (screenTime > 10000)
    if (screenBrightness != 1) {
      screenBrightness = 1;
      u8g2.setContrast(screenBrightness);
    }
}

// END FUNCTIONS SECTION