1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
|
// Copyright 2022-2023 Jared DeCook and Zach DeCook
// Licenced under the GNU GPL Version 3.
// Hardware Information:
// Generic RP2040 running at 133MHz with 16MB of flash
// https://github.com/earlephilhower/arduino-pico
// (Additional boards manager URL: https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json)
// Tools > USB Stack > (Adafruit TinyUSB)
// Sketch > Export Compiled Binary
//
// Brilliant resource for dealing with hexagonal coordinates. https://www.redblobgames.com/grids/hexagons/
// Used this to get my hexagonal animations sorted. http://ondras.github.io/rot.js/manual/#hex/indexing
// Menu library documentation https://github.com/Spirik/GEM
#include <Arduino.h>
#include <Adafruit_TinyUSB.h>
#include "LittleFS.h"
#include <MIDI.h>
#include <Adafruit_NeoPixel.h>
#define GEM_DISABLE_GLCD
#include <GEM_u8g2.h>
#include <Wire.h>
#include <Rotary.h>
// Change before compile depending on target hardware
// 1 = HexBoard 1.0 (dev unit)
// 2 = HexBoard 1.1 (first retail unit)
#define ModelNumber 2
// USB MIDI object //
Adafruit_USBD_MIDI usb_midi;
// Create a new instance of the Arduino MIDI Library,
// and attach usb_midi as the transport.
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI);
// LED SETUP //
#define LED_PIN 22
#define LED_COUNT 140
#if ModelNumber == 1
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_RGB + NEO_KHZ800);
int stripBrightness = 110;
int defaultBrightness = 70;
int dimBrightness = 20;
int pressedBrightness = 255;
#elif ModelNumber == 2
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
int stripBrightness = 130;
int defaultBrightness = 100;
int dimBrightness = 36;
int pressedBrightness = 255;
#endif
// ENCODER SETUP //
#define ROTA 20 // Rotary encoder A
#define ROTB 21 // Rotary encoder B
Rotary rotary = Rotary(ROTA, ROTB);
const int encoderClick = 24;
int encoderState = 0;
int encoderLastState = 1;
int8_t encoder_val = 0;
uint8_t encoder_state;
// Create an instance of the U8g2 graphics library.
#if ModelNumber == 1
U8G2_SH1106_128X64_NONAME_F_HW_I2C u8g2(U8G2_R2, /* reset=*/U8X8_PIN_NONE);
#elif ModelNumber == 2
U8G2_SH1107_SEEED_128X128_F_HW_I2C u8g2(U8G2_R2, /* reset=*/U8X8_PIN_NONE);
#endif
int screenBrightness = stripBrightness / 2;
//
// Button matrix and LED locations
// Portrait orientation top view:
// 9 8 7 6 5 4 3 2 1
// 20 19 18 17 16 15 14 13 12 11
// 29 28 27 26 25 24 23 22 21
// 40 39 38 37 36 35 34 33 32 31
// 49 48 47 46 45 44 43 42 41
// 60 59 58 57 56 55 54 53 52 51
// 10 69 68 67 66 65 64 63 62 61
// 30 80 79 78 77 76 75 74 73 72 71
// 50 89 88 87 86 85 84 83 82 81
// 70 100 99 98 97 96 95 94 93 92 91
// 90 109 108 107 106 105 104 103 102 101
//110 120 119 118 117 116 115 114 113 112 111
// 130 129 128 127 126 125 124 123 122 121
// 140 139 138 137 136 135 134 133 132 131
// DIAGNOSTICS //
// 1 = Full button test (1 and 0)
// 2 = Button test (button number)
// 3 = MIDI output test
// 4 = Loop timing readout in milliseconds
int diagnostics = 0;
// BUTTON MATRIX PINS //
#if ModelNumber == 1
const byte columns[] = { 14, 15, 13, 12, 11, 10, 9, 8, 7, 6 }; // Column pins in order from right to left
#elif ModelNumber == 2
const byte columns[] = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; // New board revision
#endif
const int m1p = 4; // Multiplexing chip control pins
const int m2p = 5;
const int m4p = 2;
const int m8p = 3;
// 16 & 17 reserved for lights.
const byte columnCount = sizeof(columns); // The number of columns in the matrix
const byte rowCount = 14; // The number of rows in the matrix
const byte elementCount = columnCount * rowCount; // The number of elements in the matrix
// Since MIDI only uses 7 bits, we can give greater values special meanings.
// (see commandPress)
const int CMDB_1 = 128;
const int CMDB_2 = 129;
const int CMDB_3 = 130;
const int CMDB_4 = 131;
const int CMDB_5 = 132;
const int CMDB_6 = 133;
const int CMDB_7 = 134;
const int UNUSED = 255;
// LED addresses for CMD buttons.
#if ModelNumber == 1
const byte cmdBtn1 = 10 - 1;
const byte cmdBtn2 = 30 - 1;
const byte cmdBtn3 = 50 - 1;
const byte cmdBtn4 = 70 - 1;
const byte cmdBtn5 = 90 - 1;
const byte cmdBtn6 = 110 - 1;
const byte cmdBtn7 = 130 - 1;
#else
const byte cmdBtn1 = 0;
const byte cmdBtn2 = 20;
const byte cmdBtn3 = 40;
const byte cmdBtn4 = 60;
const byte cmdBtn5 = 80;
const byte cmdBtn6 = 100;
const byte cmdBtn7 = 120;
#endif
// MIDI NOTE LAYOUTS //
#if ModelNumber == 1
#define ROW_FLIP(x, ix, viii, vii, vi, v, iv, iii, ii, i) i, ii, iii, iv, v, vi, vii, viii, ix, x
//hacky macro because I (Jared) messed up the board layout - I'll do better next time! xD
#else
#define ROW_FLIP(i, ii, iii, iv, v, vi, vii, viii, ix, x) i, ii, iii, iv, v, vi, vii, viii, ix, x
//fixed it the second time around!
#endif
// MIDI note layout tables
// ./makeLayout.py 90 2 -7
const byte wickiHaydenLayout[elementCount] = {
ROW_FLIP(CMDB_1, 90, 92, 94, 96, 98, 100, 102, 104, 106),
ROW_FLIP(83, 85, 87, 89, 91, 93, 95, 97, 99, 101),
ROW_FLIP(CMDB_2, 78, 80, 82, 84, 86, 88, 90, 92, 94),
ROW_FLIP(71, 73, 75, 77, 79, 81, 83, 85, 87, 89),
ROW_FLIP(CMDB_3, 66, 68, 70, 72, 74, 76, 78, 80, 82),
ROW_FLIP(59, 61, 63, 65, 67, 69, 71, 73, 75, 77),
ROW_FLIP(CMDB_4, 54, 56, 58, 60, 62, 64, 66, 68, 70),
ROW_FLIP(47, 49, 51, 53, 55, 57, 59, 61, 63, 65),
ROW_FLIP(CMDB_5, 42, 44, 46, 48, 50, 52, 54, 56, 58),
ROW_FLIP(35, 37, 39, 41, 43, 45, 47, 49, 51, 53),
ROW_FLIP(CMDB_6, 30, 32, 34, 36, 38, 40, 42, 44, 46),
ROW_FLIP(23, 25, 27, 29, 31, 33, 35, 37, 39, 41),
ROW_FLIP(CMDB_7, 18, 20, 22, 24, 26, 28, 30, 32, 34),
ROW_FLIP(11, 13, 15, 17, 19, 21, 23, 25, 27, 29)
};
// ./makeLayout.py 95 -7 3
const byte harmonicTableLayout[elementCount] = {
ROW_FLIP(CMDB_1, 95, 88, 81, 74, 67, 60, 53, 46, 39),
ROW_FLIP(98, 91, 84, 77, 70, 63, 56, 49, 42, 35),
ROW_FLIP(CMDB_2, 94, 87, 80, 73, 66, 59, 52, 45, 38),
ROW_FLIP(97, 90, 83, 76, 69, 62, 55, 48, 41, 34),
ROW_FLIP(CMDB_3, 93, 86, 79, 72, 65, 58, 51, 44, 37),
ROW_FLIP(96, 89, 82, 75, 68, 61, 54, 47, 40, 33),
ROW_FLIP(CMDB_4, 92, 85, 78, 71, 64, 57, 50, 43, 36),
ROW_FLIP(95, 88, 81, 74, 67, 60, 53, 46, 39, 32),
ROW_FLIP(CMDB_5, 91, 84, 77, 70, 63, 56, 49, 42, 35),
ROW_FLIP(94, 87, 80, 73, 66, 59, 52, 45, 38, 31),
ROW_FLIP(CMDB_6, 90, 83, 76, 69, 62, 55, 48, 41, 34),
ROW_FLIP(93, 86, 79, 72, 65, 58, 51, 44, 37, 30),
ROW_FLIP(CMDB_7, 89, 82, 75, 68, 61, 54, 47, 40, 33),
ROW_FLIP(92, 85, 78, 71, 64, 57, 50, 43, 36, 29)
};
// ./makeLayout.py 86 -1 -3
const byte gerhardLayout[elementCount] = {
ROW_FLIP(CMDB_1, 86, 85, 84, 83, 82, 81, 80, 79, 78),
ROW_FLIP(83, 82, 81, 80, 79, 78, 77, 76, 75, 74),
ROW_FLIP(CMDB_2, 79, 78, 77, 76, 75, 74, 73, 72, 71),
ROW_FLIP(76, 75, 74, 73, 72, 71, 70, 69, 68, 67),
ROW_FLIP(CMDB_3, 72, 71, 70, 69, 68, 67, 66, 65, 64),
ROW_FLIP(69, 68, 67, 66, 65, 64, 63, 62, 61, 60),
ROW_FLIP(CMDB_4, 65, 64, 63, 62, 61, 60, 59, 58, 57),
ROW_FLIP(62, 61, 60, 59, 58, 57, 56, 55, 54, 53),
ROW_FLIP(CMDB_5, 58, 57, 56, 55, 54, 53, 52, 51, 50),
ROW_FLIP(55, 54, 53, 52, 51, 50, 49, 48, 47, 46),
ROW_FLIP(CMDB_6, 51, 50, 49, 48, 47, 46, 45, 44, 43),
ROW_FLIP(48, 47, 46, 45, 44, 43, 42, 41, 40, 39),
ROW_FLIP(CMDB_7, 44, 43, 42, 41, 40, 39, 38, 37, 36),
ROW_FLIP(41, 40, 39, 38, 37, 36, 35, 34, 33, 32)
};
// This layout can't be created by makeLayout.py
const byte ezMajorLayout[elementCount] = { //Testing layout viability - probably will make this generative so we can easily add scales once figured out
ROW_FLIP(CMDB_1, 91, 93, 95, 96, 98, 100, 101, 103, 105),
ROW_FLIP(84, 86, 88, 89, 91, 93, 95, 96, 98, 100),
ROW_FLIP(CMDB_2, 79, 81, 83, 84, 86, 88, 89, 91, 93),
ROW_FLIP(72, 74, 76, 77, 79, 81, 83, 84, 86, 88),
ROW_FLIP(CMDB_3, 67, 69, 71, 72, 74, 76, 77, 79, 81),
ROW_FLIP(60, 62, 64, 65, 67, 69, 71, 72, 74, 76),
ROW_FLIP(CMDB_4, 55, 57, 59, 60, 62, 64, 65, 67, 69),
ROW_FLIP(48, 50, 52, 53, 55, 57, 59, 60, 62, 64),
ROW_FLIP(CMDB_5, 43, 45, 47, 48, 50, 52, 53, 55, 57),
ROW_FLIP(36, 38, 40, 41, 43, 45, 47, 48, 50, 52),
ROW_FLIP(CMDB_6, 31, 33, 35, 36, 38, 40, 41, 43, 45),
ROW_FLIP(24, 26, 28, 29, 31, 33, 35, 36, 38, 40),
ROW_FLIP(CMDB_7, 19, 21, 23, 24, 26, 28, 29, 31, 33),
ROW_FLIP(12, 14, 16, 17, 19, 21, 23, 24, 26, 28)
};
const byte* currentLayout = wickiHaydenLayout;
// These are for standard tuning only
const unsigned int pitches[128] = {
16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, // Octave 0
33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62, // Octave 1
65, 69, 73, 78, 82, 87, 93, 98, 104, 110, 117, 123, // Octave 2
131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247, // Octave 3
262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, // Octave 4
523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, // Octave 5
1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976, // Octave 6
2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951, // Octave 7
4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902, // Octave 8
8372, 8870, 9397, 9956, 10548, 11175, 11840, 12544, 13290, 14080, 14917, 15804, //9
16744, // C10
17740, // C#10
18795, // D10
19912, // D#10
21096, // E10
22350, // F10
23680 // F#10
};
const unsigned int pitches19[128] = {
// start close to C
264, 274, 284, 295, 306, 317, 329, 341, 354, 367, 380, 394, 409, 424,
// Octave starting at A=440
440, 456, 473, 491, 509, 528, 548, 568, 589, 611, 634, 657, 682, 707, 733, 761, 789, 818, 848,
880, 913, 947, 982, 1018, 1056, 1095, 1136, 1178, 1222, 1267, 1315, 1363, 1414, 1467, 1521, 1578, 1636, 1697,
1760, 1825, 1893, 1964, 2037, 2112, 2191, 2272, 2356, 2444, 2535, 2629, 2727, 2828, 2933, 3042, 3155, 3272, 3394,
3520, 3651, 3786, 3927, 4073, 4224, 4381, 4544, 4713, 4888, 5070, 5258, 5453, 5656, 5866, 6084, 6310, 6545, 6788,
7040, 7302, 7573, 7854, 8146, 8449, 8763, 9088, 9426, 9776, 10139, 10516, 10907, 11312, 11732, 12168, 12620, 13089, 13576,
14080, 14603, 15146, 15708, 16292, 16897, 17525, 18176, 18852, 19552, 20279, 21032, 21814, 22624, 23465, 24336, 25241, 26179, 27151
};
const unsigned int pitches24[128] = {
// start close to C
262, 269, 277, 285, 294, 302, 311, 320, 330, 339, 349, 359, 370, 381, 392, 403, 415, 427,
// Octave starting at A=440
440, 453, 466, 480, 494, 508, 523, 539, 554, 571, 587, 605, 622, 640, 659, 679, 698, 719, 740, 762, 784, 807, 831, 855,
880, 906, 932, 960, 988, 1017, 1047, 1077, 1109, 1141, 1175, 1209, 1245, 1281, 1319, 1357, 1397, 1438, 1480, 1523, 1568, 1614, 1661, 1710,
1760, 1812, 1865, 1919, 1976, 2033, 2093, 2154, 2217, 2282, 2349, 2418, 2489, 2562, 2637, 2714, 2794, 2876, 2960, 3047, 3136, 3228, 3322, 3420,
3520, 3623, 3729, 3839, 3951, 4067, 4186, 4309, 4435, 4565, 4699, 4836, 4978, 5124, 5274, 5429, 5588, 5751, 5920, 6093, 6272, 6456, 6645, 6840,
7040, 7246, 7459, 7677, 7902, 8134, 8372, 8617, 8870, 9130, 9397, 9673, 9956, 10248
};
// 41-TET 41 equal temperament
const unsigned int pitches41[128] = {
// Start close to C
261, 265, 269, 274, 279, 284, 288, 293, 298, 303, 309, 314, 319, 325, 330, 336, 341, 347, 353, 359, 365, 372, 378, 384, 391, 398, 404, 411, 418, 425, 433,
// Octave
440, 448, 455, 463, 471, 479, 487, 495, 504, 512, 521, 530, 539, 548, 557, 567, 577, 587, 597, 607, 617, 628, 638, 649, 660, 671, 683, 695, 706, 718, 731, 743, 756, 769, 782, 795, 809, 822, 836, 851, 865,
880, 895, 910, 926, 942, 958, 974, 991, 1007, 1025, 1042, 1060, 1078, 1096, 1115, 1134, 1153, 1173, 1193, 1213, 1234, 1255, 1276, 1298, 1320, 1343, 1366, 1389, 1413, 1437, 1461, 1486, 1512, 1537, 1564, 1590, 1617, 1645, 1673, 1701, 1730,
1760, 1790, 1821, 1852, 1883, 1915, 1948, 1981, 2015, 2049, 2084, 2120, 2156, 2193, 2230
};
#define TONEPIN 23
// Global time variables
unsigned long currentTime = 0; // Program loop consistent variable for time in milliseconds since power on
unsigned long previousTime = 0; // Used to check speed of the loop in diagnostics mode 4
int loopTime = 0; // Used to keep track of how long each loop takes. Useful for rate-limiting.
int screenTime = 0; // Used to dim screen after a set time to prolong the lifespan of the OLED
// Pitch bend and mod wheel variables
int pitchBendNeutral = 0; // The center position for the pitch bend "wheel." Could be adjusted for global tuning?
int pitchBendPosition = 0; // The actual pitch bend variable used for sending MIDI
int pitchBendSpeed = 1024; // The amount the pitch bend moves every time modPitchTime hits it's limit.
int modPitchTime = 0; // Used to rate-limit pitch bend and mod wheel updates
byte modWheelPosition = 0; // Actual mod wheel variable used for sending MIDI
byte modWheelSpeed = 6; // The amount the mod wheel moves every time modPitchTime hits it's limit.
bool pitchModToggle = 1; // Used to toggle between pitch bend and mod wheel
// Variables for holding digital button states and activation times
byte activeButtons[elementCount]; // Array to hold current note button states
byte previousActiveButtons[elementCount]; // Array to hold previous note button states for comparison
unsigned long activeButtonsTime[elementCount]; // Array to track last note button activation time for debounce
byte animationStep[elementCount]; // Array to track reactive lighting steps
int animationTime = 0; // Used for tracking how long since last lighting update
// Variables for sequencer mode
typedef struct {
bool steps[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
bool bank = 0;
int state = 0; // TODO: change to enum: normal, mute, solo, mute&solo
int instrument = 0;
} Lane;
#define STATE_MUTE 1
#define STATE_SOLO 2
#define NLANES 7
Lane lanes[NLANES];
int sequencerStep = 0; // 0 - 31
// You have to push a button to switch modes
bool sequencerMode = 0;
/*
THESE CAN BE USED TO RESET THE SEQUENCE POSITION
void handleStart(void);
void handleContinue(void);
void handleStop(void);
THIS WILL BE USED FOR THE SEQUENCER CLOCK (24 frames per quarter note)
void handleTimeCodeQuarterFrame(byte data);
We should be able to adjust the division in the menu to have different sequence speeds.
*/
void handleNoteOn(byte channel, byte pitch, byte velocity) {
// Rosegarden sends its metronome this way. Using for testing...
if (1 == sequencerMode && 10 == channel && 100 == pitch) {
sequencerPlayNextNote();
}
}
// MENU SYSTEM SETUP //
// Create menu page object of class GEMPage. Menu page holds menu items (GEMItem) and represents menu level.
// Menu can have multiple menu pages (linked to each other) with multiple menu items each
GEMPage menuPageMain("HexBoard MIDI Controller");
GEMPage menuPageLayout("Layout");
GEMPage menuPageTesting("Unfinished Alpha Tests");
GEMItem menuItemLayout("Layout", menuPageLayout);
void wickiHayden(); //Forward declarations
void harmonicTable();
void gerhard();
void ezMajor();
GEMItem menuItemWickiHayden("Wicki-Hayden", wickiHayden);
GEMItem menuItemHarmonicTable("Harmonic Table", harmonicTable);
GEMItem menuItemGerhard("Gerhard", gerhard);
GEMItem menuItemEzMajor("EZ Major", ezMajor);
void setLayoutLEDs(); //Forward declaration
byte key = 0;
SelectOptionByte selectKeyOptions[] = { { "C", 0 }, { "C#", 1 }, { "D", 2 }, { "D#", 3 }, { "E", 4 }, { "F", 5 }, { "F#", 6 }, { "G", 7 }, { "G#", 8 }, { "A", 9 }, { "A#", 10 }, { "B", 11 } };
GEMSelect selectKey(sizeof(selectKeyOptions) / sizeof(SelectOptionByte), selectKeyOptions);
GEMItem menuItemKey("Key:", key, selectKey, setLayoutLEDs);
byte scale = 0;
SelectOptionByte selectScaleOptions[] = { { "ALL", 0 }, { "Major", 1 }, { "HarMin", 2 }, { "MelMin", 3 }, { "NatMin", 4 }, { "PentMaj", 5 }, { "PentMin", 6 }, { "Blues", 7 }, { "NONE", 8 }, { "NONE", 9 }, { "NONE", 10 }, { "NONE", 11 } };
GEMSelect selectScale(sizeof(selectScaleOptions) / sizeof(SelectOptionByte), selectScaleOptions);
GEMItem menuItemScale("Scale:", scale, selectScale, applySelectedScale);
const bool (*selectedScale)[12];
// Scale arrays of boolean (for O(1) access instead of O(12/2))
// 0 1 2 3 4 5 6 7 8 9 X E
const bool noneScale[12] = {0,0,0,0,0,0,0,0,0,0,0,0};
const bool chromaticScale[12] = {1,1,1,1,1,1,1,1,1,1,1,1};
const bool majorScale[12] = {1,0,1,0,1,1,0,1,0,1,0,1};
const bool harmonicMinorScale[12] = {1,0,1,1,0,1,0,1,1,0,0,1};
const bool melodicMinorScale[12] = {1,0,1,1,0,1,0,1,0,1,0,1};
const bool naturalMinorScale[12] = {1,0,1,1,0,1,0,1,1,0,1,0};
const bool pentatonicMajorScale[12]={1,0,1,0,1,0,0,1,0,1,0,0};
const bool pentatonicMinorScale[12]={1,0,0,1,0,1,0,1,0,0,1,0};
const bool bluesScale[12] = {1,0,0,1,0,1,1,1,0,0,1,0};
// Function to apply the selected scale
void applySelectedScale() {
switch (scale) {
case 0: // All notes
selectedScale = &chromaticScale;
break;
case 1: // Major scale
selectedScale = &majorScale;
break;
case 2: // Harmonic minor scale
selectedScale = &harmonicMinorScale;
break;
case 3: // Melodic minor scale
selectedScale = &melodicMinorScale;
break;
case 4: // Natural minor scale
selectedScale = &naturalMinorScale;
break;
case 5: // Pentatonic major scale
selectedScale = &pentatonicMajorScale;
break;
case 6: // Pentatonic minor scale
selectedScale = &pentatonicMinorScale;
break;
case 7: // Blues scale
selectedScale = &bluesScale;
break;
default: // Dim all LEDs
selectedScale = &noneScale;
break;
}
setLayoutLEDs();
}
bool scaleLock = false; // For disabling all keys not in the selected scale
GEMItem menuItemScaleLock("Scale Lock:", scaleLock, setLayoutLEDs);
int transpose = 0;
SelectOptionInt selectTransposeOptions[] = {
{ "-12", -12 }, { "-11", -11 }, { "-10", -10 }, { "-9", -9 }, { "-8", -8 }, { "-7", -7 }, { "-6", -6 }, { "-5", -5 }, { "-4", -4 }, { "-3", -3 }, { "-2", -2 }, { "-1", -1 }, { "0", 0 }, { "+1", 1 }, { "+2", 2 }, { "+3", 3 }, { "+4", 4 }, { "+5", 5 }, { "+6", 6 }, { "+7", 7 }, { "+8", 8 }, { "+9", 9 }, { "+10", 10 }, { "+11", 11 }, { "+12", 12 }
};
GEMSelect selectTranspose(sizeof(selectTransposeOptions) / sizeof(SelectOptionByte), selectTransposeOptions);
void validateTranspose(); // Forward declaration
GEMItem menuItemTranspose("Transpose:", transpose, selectTranspose, validateTranspose);
SelectOptionInt selectBendSpeedOptions[] = { { "too slo", 128 }, { "Turtle", 256 }, { "Slow", 512 }, { "Medium", 1024 }, { "Fast", 2048 }, { "Cheetah", 4096 }, { "Instant", 16384 } };
GEMSelect selectBendSpeed(sizeof(selectBendSpeedOptions) / sizeof(SelectOptionInt), selectBendSpeedOptions);
GEMItem menuItemBendSpeed("Pitch Bend:", pitchBendSpeed, selectBendSpeed);
SelectOptionByte selectModSpeedOptions[] = { { "too slo", 1 }, { "Turtle", 2 }, { "Slow", 3 }, { "Medium", 6 }, { "Fast", 12 }, { "Cheetah", 32 }, { "Instant", 127 } };
GEMSelect selectModSpeed(sizeof(selectModSpeedOptions) / sizeof(SelectOptionByte), selectModSpeedOptions);
GEMItem menuItemModSpeed("Mod Wheel:", modWheelSpeed, selectModSpeed);
void setBrightness(); //Forward declaration
#if ModelNumber == 1
SelectOptionByte selectBrightnessOptions[] = { { "Night", 10 }, { "Dim", 30 }, { "Low", 70 }, { "Medium", 110 }, { "High", 160 }, { "Higher", 210 }, { "MAX(!!)", 255 } };
#elif ModelNumber == 2 // Reducing options to simplify and because the lights aren't as bright.
SelectOptionByte selectBrightnessOptions[] = { { "Dim", 20 }, { "Low", 70 }, { "Medium", 130 }, { "High", 190 }, { "Max", 255 } };
#endif
GEMSelect selectBrightness(sizeof(selectBrightnessOptions) / sizeof(SelectOptionByte), selectBrightnessOptions);
GEMItem menuItemBrightness("Brightness:", stripBrightness, selectBrightness, setBrightness);
byte lightMode = 0;
SelectOptionByte selectLightingOptions[] = { { "Button", 0 }, { "Note", 1 }, { "Octave", 2 }, { "Splash", 3 }, { "Star", 4 } };
GEMSelect selectLighting(sizeof(selectLightingOptions) / sizeof(SelectOptionByte), selectLightingOptions);
GEMItem menuItemLighting("Lighting:", lightMode, selectLighting);
bool buzzer = false; // For enabling built-in buzzer for sound generation without a computer
GEMItem menuItemBuzzer("Buzzer:", buzzer);
// For use when testing out unfinished features
GEMItem menuItemTesting("Testing", menuPageTesting);
boolean release = false; // Whether this is a release or not
GEMItem menuItemVersion("V0.4.0 ", release, GEM_READONLY);
void sequencerSetup(); //Forward declaration
// For enabling basic sequencer mode - not complete
GEMItem menuItemSequencer("Sequencer:", sequencerMode, sequencerSetup);
int tones = 12; // Experimental microtonal support
SelectOptionInt selectTonesOptions[] = {{"12", 12}, {"19", 19}, {"24", 24}, {"41", 41}};
GEMSelect selectTones(sizeof(selectTonesOptions)/sizeof(SelectOptionInt), selectTonesOptions);
GEMItem menuItemTones("Tones:", tones, selectTones);
// Create menu object of class GEM_u8g2. Supply its constructor with reference to u8g2 object we created earlier
byte menuItemHeight = 10;
byte menuPageScreenTopOffset = 10;
byte menuValuesLeftOffset = 78;
GEM_u8g2 menu(u8g2, GEM_POINTER_ROW, GEM_ITEMS_COUNT_AUTO, menuItemHeight, menuPageScreenTopOffset, menuValuesLeftOffset);
// MIDI channel assignment
byte midiChannel = 1; // Current MIDI channel (changed via user input)
// Velocity levels
byte midiVelocity = 100; // Default velocity
// END SETUP SECTION
// ------------------------------------------------------------------------------------------------------------------------------------------------------------
void setup() {
lanes[0].instrument = 36; // Bass Drum 1
lanes[1].instrument = 40; // Electric Snare
lanes[2].instrument = 46; // Open Hi-Hat
lanes[3].instrument = 42; // Closed Hi-Hat
lanes[4].instrument = 49; // Crash Cymbal 1
lanes[5].instrument = 45; // Low Tom
lanes[6].instrument = 50; // Hi Tom
#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
TinyUSB_Device_Init(0);
#endif
usb_midi.setStringDescriptor("HexBoard MIDI");
// Initialize MIDI, and listen to all MIDI channels
// This will also call usb_midi's begin()
MIDI.begin(MIDI_CHANNEL_OMNI);
// Callback will be run by MIDI.read()
MIDI.setHandleNoteOn(handleNoteOn);
//MIDI.setHandleTimeCodeQuarterFrame(handleTimeCodeQuarterFrame);
Wire.setSDA(16);
Wire.setSCL(17);
pinMode(encoderClick, INPUT_PULLUP);
Serial.begin(115200); // Set serial to make uploads work without bootsel button
LittleFSConfig cfg; // Configure file system defaults
cfg.setAutoFormat(true); // Formats file system if it cannot be mounted.
LittleFS.setConfig(cfg);
LittleFS.begin(); // Mounts file system.
if (!LittleFS.begin()) {
Serial.println("An Error has occurred while mounting LittleFS");
}
// Set pinModes for the digital button matrix.
for (int pinNumber = 0; pinNumber < columnCount; pinNumber++) // For each column pin...
{
pinMode(columns[pinNumber], INPUT_PULLUP); // set the pinMode to INPUT_PULLUP (+3.3V / HIGH).
}
pinMode(m1p, OUTPUT); // Setting the row multiplexer pins to output.
pinMode(m2p, OUTPUT);
pinMode(m4p, OUTPUT);
pinMode(m8p, OUTPUT);
strip.begin(); // INITIALIZE NeoPixel strip object
strip.show(); // Turn OFF all pixels ASAP
strip.setBrightness(stripBrightness); // Set BRIGHTNESS (max = 255)
setCMD_LEDs();
strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, pressedBrightness));
selectedScale = &chromaticScale; // Set default scale
setLayoutLEDs();
u8g2.begin(); //Menu and graphics setup
u8g2.setBusClock(1000000); // Speed up display
u8g2.setContrast(stripBrightness / 2);
menu.setSplashDelay(0);
menu.init();
setupMenu();
menu.drawMenu();
// wait until device mounted, maybe
for (int i = 0; i < 5 && !TinyUSBDevice.mounted(); i++) delay(1);
// Print diagnostic troubleshooting information to serial monitor
diagnosticTest();
}
void setup1() { //Second core exclusively runs encoder
//pinMode(ROTA, INPUT_PULLUP);
//pinMode(ROTB, INPUT_PULLUP);
//encoder_init();
}
// ------------------------------------------------------------------------------------------------------------------------------------------------------------
// START LOOP SECTION
void loop() {
// Time tracking function
timeTracker();
// Reduces wear-and-tear on OLED panel
screenSaver();
// Read and store the digital button states of the scanning matrix
readDigitalButtons();
if (sequencerMode) {
// Cause newpresses to change stuff
sequencerToggleThingies();
// If it's time to play notes, play them
sequencerMaybePlayNotes();
} else {
// Act on those buttons
playNotes();
if (pitchModToggle) {
// Pitch bend stuff
pitchBend();
} else {
// mod wheel stuff
modWheel();
}
// Held buttons
heldButtons();
}
// Animations
reactiveLighting();
// Do the LEDS
strip.show();
// Read any new MIDI messages
MIDI.read();
// Read menu navigation functions
menuNavigation();
}
void loop1() {
rotate(); // Reads the encoder on the second core to avoid missed steps
//readEncoder();
}
// END LOOP SECTION
// ------------------------------------------------------------------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------------------------------------------------------------------
// START FUNCTIONS SECTION
void timeTracker() {
loopTime = currentTime - previousTime;
if (diagnostics == 4) { //Print out the time it takes to run each loop
Serial.println(loopTime);
}
// Update previouTime variable to give us a reference point for next loop
previousTime = currentTime;
// Store the current time in a uniform variable for this program loop
currentTime = millis();
}
void diagnosticTest() {
if (diagnostics > 0) {
Serial.println("Zach was here");
}
}
void commandPress(byte command) {
if (command == CMDB_1) {
midiVelocity = 100;
setCMD_LEDs();
strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, pressedBrightness));
}
if (command == CMDB_2) {
midiVelocity = 60;
setCMD_LEDs();
strip.setPixelColor(cmdBtn2, strip.ColorHSV(65536 / 3, 255, pressedBrightness));
}
if (command == CMDB_3) {
midiVelocity = 20;
setCMD_LEDs();
strip.setPixelColor(cmdBtn3, strip.ColorHSV(65536 / 2, 255, pressedBrightness));
}
if (command == CMDB_4) {
pitchModToggle = !pitchModToggle; // Toggles between pitch bend and mod wheel
}
if (command == CMDB_5) {
}
if (command == CMDB_6) {
}
if (command == CMDB_7) {
}
}
void commandRelease(byte command) {
}
void pitchBend() {
// Default: no pitch change
int pitchBendTarget = 0;
// Otherwise set the targetted value based on the buttons pressed.
if (activeButtons[cmdBtn5] && !activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
pitchBendTarget = 8191; // Whole pitch up
} else if (activeButtons[cmdBtn5] && activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
pitchBendTarget = 4096; // Half pitch up
} else if (!activeButtons[cmdBtn5] && activeButtons[cmdBtn6] && activeButtons[cmdBtn7]) {
pitchBendTarget = -4096; // Half pitch down
} else if (!activeButtons[cmdBtn5] && !activeButtons[cmdBtn6] && activeButtons[cmdBtn7]) {
pitchBendTarget = -8192; // Whole pitch down
}
// Approach the target, sendPitchBend based on timing
if (pitchBendPosition != pitchBendTarget) {
modPitchTime = modPitchTime + loopTime;
if (modPitchTime >= 20) { // Only run this loop every 20 ms to avoid overrunning MIDI
modPitchTime = 0; // Reset clock.
// if distance between current value and target is less than the mod speed,
if (abs(pitchBendPosition - pitchBendTarget) < pitchBendSpeed) {
// don't go past the target.
pitchBendPosition = pitchBendTarget;
} else if (pitchBendPosition > pitchBendTarget) {
// otherwise, subtract (or add) the speed to approach the target.
pitchBendPosition = pitchBendPosition - pitchBendSpeed;
} else if (pitchBendPosition < pitchBendTarget) {
pitchBendPosition = pitchBendPosition + pitchBendSpeed;
}
// Always send the pitchBend because pitchBendPosition changed.
MIDI.sendPitchBend(pitchBendPosition, midiChannel);
}
}
if (pitchBendPosition == pitchBendTarget && modPitchTime != 200) { // When the pitchbend hits the target...
modPitchTime = 200; // ...reset the clock for instant responsiveness upon button change
}
// Set mode indicator button red if in pitch bend mode
strip.setPixelColor(cmdBtn4, strip.ColorHSV(0, 255, defaultBrightness));
// Set the lights
if (pitchBendPosition > 0) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, ((pitchBendPosition / 32) - 1)));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, (-pitchBendPosition / 32)));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, 0));
}
if (pitchBendPosition == 0) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, 255));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, 0));
}
if (pitchBendPosition < 0) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(0, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(0, 255, (pitchBendPosition / 32)));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(0, 255, ((-pitchBendPosition / 32) - 1)));
}
}
void modWheel() {
//Set targetted value based on what keys are being pressed.
byte modWheelTarget = 0;
if (activeButtons[cmdBtn5] && !activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
modWheelTarget = 127;
} else if (activeButtons[cmdBtn5] && activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
modWheelTarget = 100;
} else if (!activeButtons[cmdBtn5] && activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
modWheelTarget = 75;
} else if (activeButtons[cmdBtn5] && activeButtons[cmdBtn7]) {
modWheelTarget = 75;
} else if (!activeButtons[cmdBtn5] && activeButtons[cmdBtn6] && activeButtons[cmdBtn7]) {
modWheelTarget = 50;
} else if (!activeButtons[cmdBtn5] && !activeButtons[cmdBtn6] && activeButtons[cmdBtn7]) {
modWheelTarget = 25;
} else if (!activeButtons[cmdBtn5] && !activeButtons[cmdBtn6] && !activeButtons[cmdBtn7]) {
modWheelTarget = 0;
}
if (modWheelPosition != modWheelTarget) { // Only runs the clock when mod target differs from actual
modPitchTime = modPitchTime + loopTime;
if (modPitchTime >= 20) { // If it has been over 20 ms from last run,
modPitchTime = 0; // reset clock.
// if distance between current value and target is less than the mod speed,
if (abs(modWheelPosition - modWheelTarget) < modWheelSpeed) {
// don't go past the target.
modWheelPosition = modWheelTarget;
} else if (modWheelPosition > modWheelTarget) {
// otherwise, subtract (or add) the speed to approach the target.
modWheelPosition = modWheelPosition - modWheelSpeed;
} else if (modWheelPosition < modWheelTarget) {
modWheelPosition = modWheelPosition + modWheelSpeed;
}
// Always send the control change because modWheelPosition changed.
MIDI.sendControlChange(1, modWheelPosition, midiChannel);
}
}
if (modWheelPosition == modWheelTarget && modPitchTime != 200) {
modPitchTime = 200; // Resets clock when modwheel hits target for instant responsiveness upon button change
}
// Set mode indicator button green if in mod wheel mode
strip.setPixelColor(cmdBtn4, strip.ColorHSV(21854, 255, defaultBrightness));
// Set the pixel colors based on the (new) modWheelPosition.
if (modWheelPosition == 0) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 0));
} else if (modWheelPosition > 0 && modWheelPosition < 25) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, (modWheelPosition * 10)));
} else if (modWheelPosition == 25) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 255));
} else if (modWheelPosition > 25 && modWheelPosition < 75) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, ((modWheelPosition - 25) * 5)));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 255));
} else if (modWheelPosition == 75) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 0));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 255));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 255));
} else if (modWheelPosition > 75 && modWheelPosition < 125) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, ((modWheelPosition - 75) * 5)));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 255));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 255));
} else if (modWheelPosition >= 125) {
strip.setPixelColor(cmdBtn5, strip.ColorHSV(21854, 255, 255));
strip.setPixelColor(cmdBtn6, strip.ColorHSV(21854, 255, 255));
strip.setPixelColor(cmdBtn7, strip.ColorHSV(21854, 255, 255));
}
}
// BUTTONS //
void readDigitalButtons() {
if (diagnostics == 1) {
Serial.println();
}
// Button Deck
for (int rowIndex = 0; rowIndex < rowCount; rowIndex++) // Iterate through each of the row pins on the multiplexing chip.
{
digitalWrite(m1p, rowIndex & 1);
digitalWrite(m2p, (rowIndex & 2) >> 1);
digitalWrite(m4p, (rowIndex & 4) >> 2);
digitalWrite(m8p, (rowIndex & 8) >> 3);
for (byte columnIndex = 0; columnIndex < columnCount; columnIndex++) // Now iterate through each of the column pins that are connected to the current row pin.
{
byte columnPin = columns[columnIndex]; // Hold the currently selected column pin in a variable.
pinMode(columnPin, INPUT_PULLUP); // Set that row pin to INPUT_PULLUP mode (+3.3V / HIGH).
byte buttonNumber = columnIndex + (rowIndex * columnCount); // Assign this location in the matrix a unique number.
delayMicroseconds(10); // Delay to give the pin modes time to change state (false readings are caused otherwise).
previousActiveButtons[buttonNumber] = activeButtons[buttonNumber]; // Track the "previous" variable for comparison.
byte buttonState = digitalRead(columnPin); // (don't)Invert reading due to INPUT_PULLUP, and store the currently selected pin state.
if (buttonState == LOW) {
if (diagnostics == 1) {
Serial.print("1");
} else if (diagnostics == 2) {
Serial.println(buttonNumber);
}
if (!previousActiveButtons[buttonNumber]) {
// newpress time
activeButtonsTime[buttonNumber] = millis();
}
activeButtons[buttonNumber] = 1;
} else {
// Otherwise, the button is inactive, write a 0.
if (diagnostics == 1) {
Serial.print("0");
}
activeButtons[buttonNumber] = 0;
}
// Set the selected column pin back to INPUT mode (0V / LOW).
pinMode(columnPin, INPUT);
}
}
}
// Function to check if a note is within the selected scale
bool isNotePlayable(byte note) {
if (!scaleLock) {
return true; // Return true unconditionally if the toggle is disabled
}
note = (note - key + transpose) % 12;
if(tones != 12 || (*selectedScale)[note]) {
return true;
}
return false;
}
// Used by things not affected by scaleLock
bool isNoteLit(byte note) {
if(tones != 12 || (*selectedScale)[note%12]){
return true;
}
return false;
}
void playNotes() {
for (int i = 0; i < elementCount; i++) // For all buttons in the deck
{
if (activeButtons[i] != previousActiveButtons[i]) // If a change is detected
{
if (activeButtons[i] == 1) // If the button is active (newpress)
{
if (currentLayout[i] < 128) {
if (isNotePlayable(currentLayout[i])) { // If note is within the selected scale, light up and play
//strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 255, pressedBrightness));
noteOn(midiChannel, (currentLayout[i] + transpose) % 128, midiVelocity);
}
} else {
commandPress(currentLayout[i]);
}
} else {
// If the button is inactive (released)
if (currentLayout[i] < 128) {
if (isNotePlayable(currentLayout[i])) {
//setLayoutLED(i);
noteOff(midiChannel, (currentLayout[i] + transpose) % 128, 0);
}
} else {
commandRelease(currentLayout[i]);
}
}
}
}
}
void reactiveLighting() {
animationTime = animationTime + loopTime;
if (animationTime >= 33) { // If it has been at least 33 ms (30fps) from last run,
animationTime = 0; // reset clock.
setLayoutLEDs(); // Start by setting the lights to their defaults so we can "paint" on top of it.
for (int i = 0; i < elementCount; i++) { // Scanning through the buttons
if (isNotePlayable(currentLayout[i]) && currentLayout[i] < 128) { // (if they are playable)
switch (lightMode) { // and implementing the selected lighting pattern
case 0:
buttonPattern(i); // Lights up the button pressed.
break;
case 1:
notePattern(i); // Lights up the same exact notes as played across the array.
break;
case 2:
octavePattern(i); // Lights up the same notes as played in all octaves across the array.
break;
case 3:
splashPattern(i); // Creates an expanding ring around the pressed button.
break;
case 4:
starPattern(i); // Creates a starburst around the pressed button.
break;
default: // Just in case something goes wrong?
buttonPattern(i);
break;
}
}
}
}
}
int keyColor(byte note) {
return ((note - key + transpose) % tones) * ((5006*12)/tones);
}
void buttonPattern(int i) {
if (activeButtons[i] == 1) { // If it's an active button...
// ...then we light it up!
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 240, pressedBrightness));
}
}
void notePattern(int i) {
if (activeButtons[i] == 1) { // Check to see if the it's an active button.
for (int m = 0; m < elementCount; m++) { // Scanning through all the lights
if (currentLayout[m] < 128) { // Only runs on lights in the playable area
if (currentLayout[m] == currentLayout[i]) { // If it's the same note as the active button...
// ...then we light it up!
strip.setPixelColor(m, strip.ColorHSV(keyColor(currentLayout[m]), 240, pressedBrightness));
}
}
}
}
}
void octavePattern(int i) {
if (activeButtons[i] == 1) { // Check to see if the it's an active button.
for (int m = 0; m < elementCount; m++) { // Scanning through all the lights
if (currentLayout[m] < 128) { // Only runs on lights in the playable area
if (currentLayout[m] % tones == currentLayout[i] % tones) { // If it's in different octaves as the active button...
// ...then we light it up!
strip.setPixelColor(m, strip.ColorHSV(keyColor(currentLayout[m]), 240, pressedBrightness));
}
}
}
}
}
/* Kinda inefficient - adds 3ms to the loop timer for every 4 buttons held, but does not affect playability yet.
If performance becomes an issue, this may be better handled by a lookup table or something like that.
Another thing I'm considering is having an array for the lights that is populated as it runs the loops and only does setPixelColor at the
end. This would allow me to have the brightness fade and only add to the array if the light is brighter than what's currently there.*/
void splashPattern(int i) {
int x1 = i % 10; // Calculate the coordinates of the pressed button
int y1 = i / 10;
if (animationStep[i] > 0) { // Oh boy, animation time! Might be overcomplicating this...
for (int m = 0; m < elementCount; m++) { // Scanning through all the lights
if (currentLayout[m] < 128) { // Only runs on lights in the playable area
int x2 = m % 10; // Coordinates of lights
int y2 = m / 10;
int dx = x1 - x2; // Difference between light and button pressed
int dy = y1 - y2;
// Penalty int shifts the lights over depending on if they are on odd or even rows to correct for the staggered rows
#if ModelNumber == 1
int penalty = (((y1 % 2 == 0) && (y2 % 2 != 0) && (x1 > x2)) || ((y2 % 2 == 0) && (y1 % 2 != 0) && (x2 > x1))) ? 1 : 0;
#elif ModelNumber == 2
int penalty = (((y1 % 2 == 0) && (y2 % 2 != 0) && (x1 < x2)) || ((y2 % 2 == 0) && (y1 % 2 != 0) && (x2 < x1))) ? 1 : 0;
#endif
// If the light is the correct distance from the button...
if (max(abs(dy), abs(dx) + floor(abs(dy) / 2) + penalty) == animationStep[i]) {
// light it up!
strip.setPixelColor(m, strip.ColorHSV(keyColor(currentLayout[m]), 240, pressedBrightness));
// or we could have it fade as it moves
//strip.setPixelColor(m, strip.ColorHSV(keyColor(currentLayout[m]), 240, (pressedBrightness - animationStep[i]*12)));
}
}
}
}
if (activeButtons[i] == 1) { // Check to see if the it's an active button.
// Then we light up the pressed button
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 240, pressedBrightness));
if (animationStep[i] < 16) {
animationStep[i]++; // Increment the animation to the next step for next time.
}
} else {
animationStep[i] = 0; // Stop the animation if the key is released
}
}
void starPattern(int i) { // This one is far more efficient with no noticeable performance hit when playing lots of notes at once.
int x1 = i % 10; // Calculate the coordinates of the pressed button
int y1 = i / 10;
// Define the relative offsets of neighboring buttons in the pattern
#if ModelNumber == 1
int offsets[][2] = {
{ 0, 1 }, // Left
{ 0, -1 }, // Right
{ -1, (y1 % 2 == 0) ? 0 : -1 }, // Top Left (adjusted based on row parity)
{ -1, (y1 % 2 == 0) ? 1 : 0 }, // Top Right (adjusted based on row parity)
{ 1, (y1 % 2 == 0) ? 1 : 0 }, // Bottom Right (adjusted based on row parity)
{ 1, (y1 % 2 == 0) ? 0 : -1 } // Bottom Left (adjusted based on row parity)
};
#elif ModelNumber == 2
int offsets[][2] = {
{ 0, -1 }, // Left
{ 0, 1 }, // Right
{ -1, (y1 % 2 == 0) ? 0 : 1 }, // Top Left (adjusted based on row parity)
{ -1, (y1 % 2 == 0) ? -1 : 0 }, // Top Right (adjusted based on row parity)
{ 1, (y1 % 2 == 0) ? -1 : 0 }, // Bottom Right (adjusted based on row parity)
{ 1, (y1 % 2 == 0) ? 0 : 1 } // Bottom Left (adjusted based on row parity)
};
#endif
if (animationStep[i] > 0) { // Oh boy, animation time!
for (const auto& offset : offsets) {
// Calculate the neighboring button coordinates
int y2 = y1 + offset[0] * animationStep[i];
#if ModelNumber == 1
int x2 = x1 + offset[1] * animationStep[i] + ((y1 % 2 == 0) ? -1 : 1) * ((y1 == y2) ? 0 : 1) * (animationStep[i] / 2);
#elif ModelNumber == 2
int x2 = x1 + offset[1] * animationStep[i] + ((y1 % 2 == 0) ? 1 : -1) * ((y1 == y2) ? 0 : 1) * (animationStep[i] / 2);
#endif
// Check if the neighboring button is within the layout boundaries
if (y2 >= 0 && y2 < 14 && x2 >= 0 && x2 < 10) {
// Calculate the index of the neighboring button
int neighborIndex = y2 * 10 + x2;
if (currentLayout[neighborIndex] < 128) { // If it's in the playable area...
// ...set the color for the neighboring button
strip.setPixelColor(neighborIndex, strip.ColorHSV(keyColor(currentLayout[neighborIndex]), 240, pressedBrightness));
}
}
}
}
if (activeButtons[i] == 1) { // Check to see if the it's an active button.
// Then we light up the pressed button
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 240, pressedBrightness));
if (animationStep[i] < 16) {
animationStep[i]++; // Increment the animation to the next step for next time.
}
} else {
animationStep[i] = 0; // Stop the animation if the key is released
}
}
void heldButtons() {
for (int i = 0; i < elementCount; i++) {
if (activeButtons[i]) {
//if (
}
}
}
void sequencerToggleThingies() {
// For all buttons in the deck
for (int i = 0; i < elementCount; i++) {
// Some change was made
if (activeButtons[i] != previousActiveButtons[i]) {
// newpress
if (activeButtons[i]) {
int stripN = i / 20;
if (stripN >= NLANES) continue; // avoid an error.
int step = map2step(i % 20);
if (step >= 0) {
int offset = lanes[stripN].bank * 16;
lanes[stripN].steps[step + offset] = !lanes[stripN].steps[step + offset];
int color = 0;
if (lanes[stripN].steps[step + offset]) color = 255;
strip.setPixelColor(i, color, color, color);
} else if (step == -1) { // switching banks
lanes[stripN].bank = !lanes[stripN].bank;
int offset = lanes[stripN].bank * 16;
for (int j = 0; j < 16; j++) {
int color = 0;
if (lanes[stripN].steps[j + offset]) color = 255;
strip.setPixelColor((stripN * 20) + step2map(j), color, color, color);
}
}
}
}
}
}
// TODO: Redefine these for hexboard v2
int map2step(int i) {
if (i >= 10) {
return (19 - i) * 2;
}
if (i <= 8) {
return ((8 - i) * 2) + 1;
}
return -1;
}
int step2map(int step) {
if (step % 2) {
return 8 - ((step - 1) / 2);
}
return 19 - (step / 2);
}
void sequencerMaybePlayNotes() {
// TODO: sometimes call sequencerPlayNextNote();
}
// Do the next note, and increment the sequencer counter
void sequencerPlayNextNote() {
bool anySolo = false;
for (int i = 0; i < NLANES; i++) {
// bitwise check if it's soloed
if (lanes[i].state & STATE_SOLO) {
anySolo = true;
}
}
for (int i = 0; i < NLANES; i++) {
// If something is soloed (not this one), then don't do the thing
if (anySolo && !(lanes[i].state & STATE_SOLO)) {
continue;
}
// If this one was muted, don't do the thing.
if (lanes[i].state & STATE_MUTE) {
continue;
}
int offset = lanes[i].bank * 16;
if (lanes[i].steps[sequencerStep + offset]) {
// do the thing.
noteOn(midiChannel, lanes[i].instrument % 128, midiVelocity);
// TODO: Change when the noteoff is played?
noteOff(midiChannel, lanes[i].instrument % 128, 0);
}
}
// increment and confine to limit
sequencerStep++;
sequencerStep %= 16;
}
// Return the first note that is currently held.
byte getHeldNote() {
for (int i = 0; i < elementCount; i++) {
if (activeButtons[i]) {
if (currentLayout[i] < 128 && isNotePlayable(currentLayout[i])) {
return (currentLayout[i] + transpose) % 128;
}
}
}
return 128;
}
void do_tone(byte pitch) {
if (tones == 12) {
tone(TONEPIN, pitches[pitch]);
} else if (tones == 19) {
tone(TONEPIN, pitches19[pitch]);
} else if (tones == 24) {
tone(TONEPIN, pitches24[pitch]);
} else if (tones == 41) {
tone(TONEPIN, pitches41[pitch]);
}
}
// MIDI AND OTHER OUTPUTS //
// Send Note On
void noteOn(byte channel, byte pitch, byte velocity) {
MIDI.sendNoteOn(pitch, velocity, channel);
if (diagnostics == 3) {
Serial.print(pitch);
Serial.print(", ");
Serial.print(velocity);
Serial.print(", ");
Serial.println(channel);
}
if (buzzer) {
do_tone(pitch);
}
}
// Send Note Off
void noteOff(byte channel, byte pitch, byte velocity) {
MIDI.sendNoteOff(pitch, velocity, channel);
noTone(TONEPIN);
if (buzzer) {
byte anotherPitch = getHeldNote();
if (anotherPitch < 128) {
do_tone(anotherPitch);
} else {
}
}
}
// LEDS //
void setCMD_LEDs() {
strip.setPixelColor(cmdBtn1, strip.ColorHSV(65536 / 12, 255, dimBrightness));
strip.setPixelColor(cmdBtn2, strip.ColorHSV(65536 / 3, 255, dimBrightness));
strip.setPixelColor(cmdBtn3, strip.ColorHSV(65536 / 2, 255, dimBrightness));
strip.setPixelColor(cmdBtn4, strip.ColorHSV(0, 255, defaultBrightness));
}
void setLayoutLEDs() {
for (int i = 0; i < elementCount; i++) {
if (currentLayout[i] <= 127) {
setLayoutLED(i);
}
}
}
void setLayoutLED(int i) {
if (scaleLock) {
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 255, 0));
} else {
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 255, dimBrightness));
}
// Scale highlighting
if (isNoteLit(currentLayout[i])) {
strip.setPixelColor(i, strip.ColorHSV(keyColor(currentLayout[i]), 255, defaultBrightness));
}
}
// ENCODER //
// rotary encoder pin change interrupt handler
void readEncoder() {
encoder_state = (encoder_state << 4) | (digitalRead(ROTB) << 1) | digitalRead(ROTA);
Serial.println(encoder_val);
switch (encoder_state) {
case 0x23: encoder_val++; break;
case 0x32: encoder_val--; break;
default: break;
}
}
void rotate() {
unsigned char result = rotary.process();
if (result == DIR_CW) {
encoder_val++;
} else if (result == DIR_CCW) {
encoder_val--;
}
}
// rotary encoder init
void encoder_init() {
// enable pin change interrupts
attachInterrupt(digitalPinToInterrupt(ROTA), readEncoder, RISING);
attachInterrupt(digitalPinToInterrupt(ROTB), readEncoder, RISING);
encoder_state = (digitalRead(ROTB) << 1) | digitalRead(ROTA);
interrupts();
}
// MENU //
void menuNavigation() {
if (menu.readyForKey()) {
encoderState = digitalRead(encoderClick);
if (encoderState > encoderLastState) {
menu.registerKeyPress(GEM_KEY_OK);
screenTime = 0;
}
encoderLastState = encoderState;
if (encoder_val < 0) {
menu.registerKeyPress(GEM_KEY_UP);
encoder_val = 0;
screenTime = 0;
}
if (encoder_val > 0) {
menu.registerKeyPress(GEM_KEY_DOWN);
encoder_val = 0;
screenTime = 0;
}
}
}
void setupMenu() {
// Add menu items to Main menu page
menuPageMain.addMenuItem(menuItemLayout);
menuPageMain.addMenuItem(menuItemKey);
menuPageMain.addMenuItem(menuItemScale);
menuPageMain.addMenuItem(menuItemScaleLock);
menuPageMain.addMenuItem(menuItemTranspose);
menuPageMain.addMenuItem(menuItemBendSpeed);
menuPageMain.addMenuItem(menuItemModSpeed);
menuPageMain.addMenuItem(menuItemBrightness);
menuPageMain.addMenuItem(menuItemLighting);
menuPageMain.addMenuItem(menuItemBuzzer);
menuPageMain.addMenuItem(menuItemTesting);
// Add menu items to Layout Select page
menuPageLayout.addMenuItem(menuItemWickiHayden);
menuPageLayout.addMenuItem(menuItemHarmonicTable);
menuPageLayout.addMenuItem(menuItemGerhard);
// Add menu items to Testing page
menuPageTesting.addMenuItem(menuItemSequencer);
menuPageTesting.addMenuItem(menuItemEzMajor);
menuPageTesting.addMenuItem(menuItemVersion);
menuPageTesting.addMenuItem(menuItemTones);
// Specify parent menu page for the other menu pages
menuPageLayout.setParentMenuPage(menuPageMain);
menuPageTesting.setParentMenuPage(menuPageMain);
// Add menu page to menu and set it as current
menu.setMenuPageCurrent(menuPageMain);
}
void wickiHayden() {
currentLayout = wickiHaydenLayout;
setLayoutLEDs();
if (ModelNumber != 1) {
u8g2.setDisplayRotation(U8G2_R2);
}
menu.setMenuPageCurrent(menuPageMain);
menu.drawMenu();
}
void harmonicTable() {
currentLayout = harmonicTableLayout;
setLayoutLEDs();
if (ModelNumber != 1) {
u8g2.setDisplayRotation(U8G2_R1);
}
menu.setMenuPageCurrent(menuPageMain);
menu.drawMenu();
}
void gerhard() {
currentLayout = gerhardLayout;
setLayoutLEDs();
if (ModelNumber != 1) {
u8g2.setDisplayRotation(U8G2_R1);
}
menu.setMenuPageCurrent(menuPageMain);
menu.drawMenu();
}
void ezMajor() {
currentLayout = ezMajorLayout;
setLayoutLEDs();
if (ModelNumber != 1) {
u8g2.setDisplayRotation(U8G2_R2);
}
menu.setMenuPageCurrent(menuPageMain);
menu.drawMenu();
}
void setBrightness() {
strip.setBrightness(stripBrightness);
setLayoutLEDs();
}
// Validation routine of transpose variable
void validateTranspose() {
//Need to add some code here to make sure transpose doesn't get out of hand
/*something like
if ((transpose + LOWEST NOTE IN ARRAY) < 0) {
transpose = 0;
} */
setLayoutLEDs();
}
void screenSaver() {
if (screenTime <= 10000) {
screenTime = screenTime + loopTime;
if (screenBrightness != stripBrightness / 2) {
screenBrightness = stripBrightness / 2;
u8g2.setContrast(screenBrightness);
}
}
if (screenTime > 10000)
if (screenBrightness != 1) {
screenBrightness = 1;
u8g2.setContrast(screenBrightness);
}
}
void sequencerSetup() {
if (sequencerMode) {
strip.clear();
strip.show();
} else {
setLayoutLEDs();
setCMD_LEDs();
}
}
// END FUNCTIONS SECTION
|