// ====== Hexperiment // Sketch to program the hexBoard to handle microtones // March 2024, theHDM / Nicholas Fox // major thanks to Zach and Jared! // Arduino IDE setup: // Board = Generic RP2040 (use the following additional board manager repo: // https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json) // Patches needed for U8G2, Rotary.h // ============================================================================== // list of things remaining to do: // -- program the wheel -- OK! // -- put back the animations -- OK! // -- test MPE working on iPad garageband -- works on pianoteq without MPE; need to get powered connection to iOS. // -- volume control test on buzzer // -- save and load presets // -- sequencer restore // ============================================================================== // #include #include #include #include // std::queue construct to store open channels in microtonal mode const byte diagnostics = 1; // ====== initialize timers uint32_t runTime = 0; // Program loop consistent variable for time in milliseconds since power on uint32_t lapTime = 0; // Used to keep track of how long each loop takes. Useful for rate-limiting. uint32_t loopTime = 0; // Used to check speed of the loop in diagnostics mode 4 // ====== initialize SDA and SCL pins for hardware I/O const byte lightPinSDA = 16; const byte lightPinSCL = 17; // ====== initialize MIDI #include #include Adafruit_USBD_MIDI usb_midi; MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI); float concertA = 440.0; // tuning of A4 in Hz byte MPE = 0; // microtonal mode. if zero then attempt to self-manage multiple channels. // if one then on certain synths that are MPE compatible will send in that mode. int16_t channelBend[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // what's the current note bend on this channel byte channelPoly[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // how many notes are playing on this channel std::queue openChannelQueue; const byte defaultPBRange = 2; // ====== initialize LEDs #include const byte multiplexPins[] = { 4, 5, 2, 3 }; // m1p, m2p, m4p, m8p const byte rowCount = 14; // The number of rows in the matrix const byte columnPins[] = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; const byte colCount = sizeof(columnPins); // The number of columns in the matrix const byte hexCount = colCount * rowCount; // The number of elements in the matrix const byte LEDPin = 22; Adafruit_NeoPixel strip(hexCount, LEDPin, NEO_GRB + NEO_KHZ800); enum { NoAnim, StarAnim, SplashAnim, OrbitAnim, OctaveAnim, NoteAnim }; byte animationType = 0; byte animationFPS = 32; // actually frames per 2^10 seconds. close enough to 30fps int16_t rainbowDegreeTime = 64; // ms to go through 1/360 of rainbow. // ====== initialize hex state object enum { Right, UpRight, UpLeft, Left, DnLeft, DnRight }; typedef struct { int8_t row; int8_t col; } coordinates; typedef struct { byte keyState = 0; // binary 00 = off, 01 = just pressed, 10 = just released, 11 = held coordinates coords = {0,0}; uint32_t timePressed = 0; // timecode of last press uint32_t LEDcolorAnim = 0; // uint32_t LEDcolorPlay = 0; // uint32_t LEDcolorOn = 0; // uint32_t LEDcolorOff = 0; // bool animate = 0; // hex is flagged as part of the animation in this frame int16_t steps = 0; // number of steps from key center (semitones in 12EDO; microtones if >12EDO) bool isCmd = 0; // 0 if it's a MIDI note; 1 if it's a MIDI control cmd bool inScale = 0; // 0 if it's not in the selected scale; 1 if it is byte note = 255; // MIDI note or control parameter corresponding to this hex int16_t bend; // in microtonal mode, the pitch bend for this note needed to be tuned correctly byte channel; // what MIDI channel this note is playing on float frequency; // what frequency to ring on the buzzer void updateKeyState(bool keyPressed) { keyState = (((keyState << 1) + keyPressed) & 3); if (keyState == 1) { timePressed = millis(); // log the time }; }; uint32_t animFrame() { if (timePressed) { // 2^10 milliseconds is close enough to 1 second return 1 + (((runTime - timePressed) * animationFPS) >> 10); } else { return 0; }; }; } buttonDef; buttonDef h[hexCount]; // array of hex objects from 0 to 139 const byte assignCmd[] = { 0, 20, 40, 60, 80, 100, 120 }; const byte cmdCount = 7; const byte cmdCode = 192; // ====== initialize wheel emulation const uint16_t ccMsgCoolDown = 20; // milliseconds between steps typedef struct { byte* topBtn; byte* midBtn; byte* botBtn; int16_t minValue; int16_t maxValue; uint16_t stepValue; int16_t defValue; int16_t curValue; int16_t targetValue; uint32_t timeLastChanged; void setTargetValue() { if (*midBtn >> 1) { // middle button toggles target (0) vs. step (1) mode int16_t temp = curValue; if (*topBtn == 1) {temp += stepValue;}; if (*botBtn == 1) {temp -= stepValue;}; if (temp > maxValue) {temp = maxValue;} else if (temp <= minValue) {temp = minValue;}; targetValue = temp; } else { switch (((*topBtn >> 1) << 1) + (*botBtn >> 1)) { case 0b10: targetValue = maxValue; break; case 0b11: targetValue = defValue; break; case 0b01: targetValue = minValue; break; default: targetValue = curValue; break; }; }; }; bool updateValue() { int16_t temp = targetValue - curValue; if (temp != 0) { if ((runTime - timeLastChanged) >= ccMsgCoolDown) { timeLastChanged = runTime; if (abs(temp) < stepValue) { curValue = targetValue; } else { curValue = curValue + (stepValue * (temp / abs(temp))); }; return 1; } else { return 0; }; } else { return 0; }; }; } wheelDef; wheelDef modWheel = { &h[assignCmd[4]].keyState, &h[assignCmd[5]].keyState, &h[assignCmd[6]].keyState, 0, 127, 8, 0, 0, 0 }; wheelDef pbWheel = { &h[assignCmd[4]].keyState, &h[assignCmd[5]].keyState, &h[assignCmd[6]].keyState, -8192, 8192, 1024, 0, 0, 0 }; wheelDef velWheel = { &h[assignCmd[0]].keyState, &h[assignCmd[1]].keyState, &h[assignCmd[2]].keyState, 0, 127, 8, 96, 96, 96 }; bool toggleWheel = 0; // 0 for mod, 1 for pb // ====== initialize rotary knob #include const byte rotaryPinA = 20; const byte rotaryPinB = 21; const byte rotaryPinC = 24; Rotary rotary = Rotary(rotaryPinA, rotaryPinB); bool rotaryIsClicked = HIGH; // bool rotaryWasClicked = HIGH; // int8_t rotaryKnobTurns = 0; // // ====== initialize GFX display #include #define GEM_DISABLE_GLCD U8G2_SH1107_SEEED_128X128_F_HW_I2C u8g2(U8G2_R2, U8X8_PIN_NONE); GEM_u8g2 menu(u8g2, GEM_POINTER_ROW, GEM_ITEMS_COUNT_AUTO, 10, 10, 78); // menu item height; page screen top offset; menu values left offset const byte defaultContrast = 63; // GFX default contrast bool screenSaverOn = 0; // uint32_t screenTime = 0; // GFX timer to count if screensaver should go on const uint32_t screenSaverMillis = 10000; // // ====== initialize piezo buzzer //#include "RP2040_Volume.h" // simulated volume control on buzzer const byte tonePin = 23; //RP2040_Volume piezoBuzzer(tonePin, tonePin); byte buzzer = 0; // buzzer state byte currentBuzzNote = 255; // need to work on this uint32_t currentBuzzTime = 0; // Used to keep track of when this note started buzzin uint32_t arpeggiateLength = 10; // // ====== initialize tuning (microtonal) presets typedef struct { char* name; byte cycleLength; // steps before repeat float stepSize; // in cents, 100 = "normal" semitone. } tuningDef; enum { Twelve, Seventeen, Nineteen, TwentyTwo, TwentyFour, ThirtyOne, FortyOne, FiftyThree, SeventyTwo, BohlenPierce, CarlosA, CarlosB, CarlosG }; tuningDef tuningOptions[] = { // replaces the idea of const byte EDO[] = { 12, 17, 19, 22, 24, 31, 41, 53, 72 }; { (char*)"12 EDO", 12, 100.0 }, { (char*)"17 EDO", 17, 1200.0 / 17 }, { (char*)"19 EDO", 19, 1200.0 / 19 }, { (char*)"22 EDO", 22, 1200.0 / 22 }, { (char*)"24 EDO", 24, 50.0 }, { (char*)"31 EDO", 31, 1200.0 / 31 }, { (char*)"41 EDO", 41, 1200.0 / 41 }, { (char*)"53 EDO", 53, 1200.0 / 53 }, { (char*)"72 EDO", 72, 100.0 / 6 }, { (char*)"Bohlen-Pierce", 13, 1901.955 / 13 }, // { (char*)"Carlos Alpha", 9, 77.965 }, // { (char*)"Carlos Beta", 11, 63.833 }, // { (char*)"Carlos Gamma", 20, 35.099 } }; const byte tuningCount = sizeof(tuningOptions) / sizeof(tuningDef); // ====== initialize layout patterns typedef struct { char* name; bool isPortrait; byte rootHex; int8_t acrossSteps; int8_t dnLeftSteps; byte tuning; } layoutDef; layoutDef layoutOptions[] = { { (char*)"Wicki-Hayden", 1, 64, 2, -7, Twelve }, { (char*)"Harmonic Table", 0, 75, -7, 3, Twelve }, { (char*)"Janko", 0, 65, -1, -1, Twelve }, { (char*)"Gerhard", 0, 65, -1, -3, Twelve }, { (char*)"Accordion C-sys.", 1, 75, 2, -3, Twelve }, { (char*)"Accordion B-sys.", 1, 64, 1, -3, Twelve }, { (char*)"Full Layout", 1, 65, -1, -9, Twelve }, { (char*)"Bosanquet, 17", 0, 65, -2, -1, Seventeen }, { (char*)"Full Layout", 1, 65, -1, -9, Seventeen }, { (char*)"Bosanquet, 19", 0, 65, -1, -2, Nineteen }, { (char*)"Full Layout", 1, 65, -1, -9, Nineteen }, { (char*)"Bosanquet, 22", 0, 65, -3, -1, TwentyTwo }, { (char*)"Full Layout", 1, 65, -1, -9, TwentyTwo }, { (char*)"Bosanquet, 24", 0, 65, -1, -3, TwentyFour }, { (char*)"Full Layout", 1, 65, -1, -9, TwentyFour }, { (char*)"Bosanquet, 31", 0, 65, -2, -3, ThirtyOne }, { (char*)"Full Layout", 1, 65, -1, -9, ThirtyOne }, { (char*)"Bosanquet, 41", 0, 65, -4, -3, FortyOne }, // forty-one #1 { (char*)"Gerhard, 41", 0, 65, 3, -10, FortyOne }, // forty-one #2 { (char*)"Full Layout, 41", 0, 65, -1, -8, FortyOne }, // forty-one #3 { (char*)"Wicki-Hayden, 53", 1, 64, 9, -31, FiftyThree }, { (char*)"Harmonic Tbl, 53", 0, 75, -31, 14, FiftyThree }, { (char*)"Bosanquet, 53", 0, 65, -5, -4, FiftyThree }, { (char*)"Full Layout, 53", 0, 65, -1, -9, FiftyThree }, { (char*)"Full Layout, 72", 0, 65, -1, -9, SeventyTwo }, { (char*)"Full Layout", 1, 65, -1, -9, BohlenPierce }, { (char*)"Full Layout", 1, 65, -1, -9, CarlosA }, { (char*)"Full Layout", 1, 65, -1, -9, CarlosB }, { (char*)"Full Layout", 1, 65, -1, -9, CarlosG } }; const byte layoutCount = sizeof(layoutOptions) / sizeof(layoutDef); // ====== initialize list of supported scales / modes / raga / maqam typedef struct { char* name; byte tuning; byte step[16]; // 16 bytes = 128 bits, 1 = in scale; 0 = not } scaleDef; scaleDef scaleOptions[] = { { (char*)"None", 255, { 255, 255, 255,255,255,255,255,255,255,255,255,255,255,255,255,255} }, { (char*)"Major", Twelve, { 0b10101101, 0b0101'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Minor, natural", Twelve, { 0b10110101, 0b1010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Minor, melodic", Twelve, { 0b10110101, 0b0101'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Minor, harmonic", Twelve, { 0b10110101, 0b1001'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Pentatonic, major", Twelve, { 0b10101001, 0b0100'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Pentatonic, minor", Twelve, { 0b10010101, 0b0010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Blues", Twelve, { 0b10010111, 0b0010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Double Harmonic", Twelve, { 0b11001101, 0b1001'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Phrygian", Twelve, { 0b11010101, 0b1010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Phrygian Dominant", Twelve, { 0b11001101, 0b1010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Dorian", Twelve, { 0b10110101, 0b0110'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Lydian", Twelve, { 0b10101011, 0b0101'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Lydian Dominant", Twelve, { 0b10101011, 0b0110'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Mixolydian", Twelve, { 0b10101101, 0b0110'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Locrian", Twelve, { 0b11010110, 0b1010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Whole tone", Twelve, { 0b10101010, 0b1010'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Octatonic", Twelve, { 0b10110110, 0b1101'0000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Rast maqam", TwentyFour, { 0b10001001, 0b00100010, 0b00101100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { (char*)"Rast makam", FiftyThree, { 0b10000000, 0b01000000, 0b01000010, 0b00000001, 0b00000000, 0b10001000, 0b10000'000, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, }; const byte scaleCount = sizeof(scaleOptions) / sizeof(scaleDef); byte scaleLock = 0; // menu wants this to be an int, not a bool // ====== initialize key coloring routines enum colors { W, R, O, Y, L, G, C, B, I, P, M, r, o, y, l, g, c, b, i, p, m }; enum { DARK = 0, VeryDIM = 1, DIM = 32, BRIGHT = 127, VeryBRIGHT = 255 }; enum { GRAY = 0, DULL = 127, VIVID = 255 }; float hueCode[] = { 0.0, 0.0, 36.0, 72.0, 108.0, 144.0, 180.0, 216.0, 252.0, 288.0, 324.0, 0.0, 36.0, 72.0, 108.0, 144.0, 180.0, 216.0, 252.0, 288.0, 324.0 }; byte satCode[] = { GRAY, VIVID,VIVID,VIVID,VIVID,VIVID,VIVID,VIVID,VIVID,VIVID,VIVID, DULL, DULL, DULL, DULL, DULL, DULL, DULL, DULL, DULL, DULL }; byte colorMode = 0; byte perceptual = 1; enum {assignDefault = -1}; // auto-determine this component of color // ====== initialize note labels in each tuning, also used for key signature typedef struct { char* name; byte tuning; int8_t offset; // steps from constant A4 to that key class colors tierColor; } keyDef; keyDef keyOptions[] = { // 12 EDO, whole tone = 2, #/b = 1 { (char*)" C (B#)", Twelve, -9, W }, { (char*)" C# / Db", Twelve, -8, I }, { (char*)" D", Twelve, -7, W }, { (char*)" D# / Eb", Twelve, -6, I }, { (char*)" (Fb) E", Twelve, -5, W }, { (char*)" F (E#)", Twelve, -4, W }, { (char*)" Gb / F#", Twelve, -3, I }, { (char*)" G", Twelve, -2, W }, { (char*)" G# / Ab", Twelve, -1, I }, { (char*)" A", Twelve, 0, W }, { (char*)" A# / Bb", Twelve, 1, I }, { (char*)"(Cb) B", Twelve, 2, W }, // 17 EDO, whole tone = 3, #/b = 2, +/d = 1 { (char*)" C (B+)", Seventeen, -13, W }, { (char*)" C+ / Db / B#", Seventeen, -12, R }, { (char*)" C# / Dd", Seventeen, -11, I }, { (char*)" D", Seventeen, -10, W }, { (char*)" D+ / Eb", Seventeen, -9, R }, { (char*)" Fb / D# / Ed", Seventeen, -8, I }, { (char*)"(Fd) E", Seventeen, -7, W }, { (char*)" F (E+)", Seventeen, -6, W }, { (char*)" F+ / Gb / E#", Seventeen, -5, R }, { (char*)" F# / Gd", Seventeen, -4, I }, { (char*)" G", Seventeen, -3, W }, { (char*)" G+ / Ab", Seventeen, -2, R }, { (char*)" G# / Ad", Seventeen, -1, I }, { (char*)" A", Seventeen, 0, W }, { (char*)" Bb / A+", Seventeen, 1, R }, { (char*)" Cb / Bd / A#", Seventeen, 2, I }, { (char*)"(Cd) B" , Seventeen, 3, W }, // 19 EDO, whole tone = 3, #/b = 1 { (char*)" C", Nineteen, -14, W }, { (char*)" C#", Nineteen, -13, R }, { (char*)" Db", Nineteen, -12, I }, { (char*)" D", Nineteen, -11, W }, { (char*)" D#", Nineteen, -10, R }, { (char*)" Eb", Nineteen, -9, I }, { (char*)" E", Nineteen, -8, W }, { (char*)" E# / Fb", Nineteen, -7, m }, { (char*)" F", Nineteen, -6, W }, { (char*)" F#", Nineteen, -5, R }, { (char*)" Gb", Nineteen, -4, I }, { (char*)" G", Nineteen, -3, W }, { (char*)" G#", Nineteen, -2, R }, { (char*)" Ab", Nineteen, -1, I }, { (char*)" A", Nineteen, 0, W }, { (char*)" A#", Nineteen, 1, R }, { (char*)" Bb", Nineteen, 2, I }, { (char*)" B", Nineteen, 3, W }, { (char*)" Cb / B#", Nineteen, 4, m }, // 22 EDO, whole tone = 4, #/b = 3, ^/v = 1 { (char*)" C (^B)", TwentyTwo, -17, W }, { (char*)" ^C / Db / vB#", TwentyTwo, -16, l }, { (char*)" vC# / ^Db / B#", TwentyTwo, -15, C }, { (char*)" C# / vD", TwentyTwo, -14, i }, { (char*)" D", TwentyTwo, -13, W }, { (char*)" ^D / Eb", TwentyTwo, -12, l }, { (char*)" Fb / vD# / ^Eb", TwentyTwo, -11, C }, { (char*)" ^Fb / D# / vE", TwentyTwo, -10, i }, { (char*)"(vF) E", TwentyTwo, -9, W }, { (char*)" F (^E)", TwentyTwo, -8, W }, { (char*)" ^F / Gb / vE#", TwentyTwo, -7, l }, { (char*)" vF# / ^Gb / E#", TwentyTwo, -6, C }, { (char*)" F# / vG", TwentyTwo, -5, i }, { (char*)" G", TwentyTwo, -4, W }, { (char*)" ^G / Ab", TwentyTwo, -3, l }, { (char*)" vG# / ^Ab", TwentyTwo, -2, C }, { (char*)" G# / vA", TwentyTwo, -1, i }, { (char*)" A", TwentyTwo, 0, W }, { (char*)" Bb / ^A", TwentyTwo, 1, l }, { (char*)" Cb / ^Bb / vA#", TwentyTwo, 2, C }, { (char*)" ^Cb / vB / A#", TwentyTwo, 3, i }, { (char*)"(vC) B", TwentyTwo, 4, W }, // 24 EDO, whole tone = 4, #/b = 2, +/d = 1 { (char*)" C / B#", TwentyFour, -18, W }, { (char*)" C+", TwentyFour, -17, r }, { (char*)" C# / Db", TwentyFour, -16, I }, { (char*)" Dd", TwentyFour, -15, g }, { (char*)" D", TwentyFour, -14, W }, { (char*)" D+", TwentyFour, -13, r }, { (char*)" Eb / D#", TwentyFour, -12, I }, { (char*)" Ed", TwentyFour, -11, g }, { (char*)" E / Fb", TwentyFour, -10, W }, { (char*)" E+ / Fd", TwentyFour, -9, y }, { (char*)" E# / F", TwentyFour, -8, W }, { (char*)" F+", TwentyFour, -7, r }, { (char*)" Gb / F#", TwentyFour, -6, I }, { (char*)" Gd", TwentyFour, -5, g }, { (char*)" G", TwentyFour, -4, W }, { (char*)" G+", TwentyFour, -3, r }, { (char*)" G# / Ab", TwentyFour, -2, I }, { (char*)" Ad", TwentyFour, -1, g }, { (char*)" A", TwentyFour, 0, W }, { (char*)" A+", TwentyFour, 1, r }, { (char*)" Bb / A#", TwentyFour, 2, I }, { (char*)" Bd", TwentyFour, 3, g }, { (char*)" B / Cb", TwentyFour, 4, W }, { (char*)" B+ / Cd", TwentyFour, 5, y }, // 31 EDO, whole tone = 5, #/b = 2, +/d = 1 { (char*)" C", ThirtyOne, -23, W }, { (char*)" C+", ThirtyOne, -22, R }, { (char*)" C#", ThirtyOne, -21, Y }, { (char*)" Db", ThirtyOne, -20, C }, { (char*)" Dd", ThirtyOne, -19, I }, { (char*)" D", ThirtyOne, -18, W }, { (char*)" D+", ThirtyOne, -17, R }, { (char*)" D#", ThirtyOne, -16, Y }, { (char*)" Eb", ThirtyOne, -15, C }, { (char*)" Ed", ThirtyOne, -14, I }, { (char*)" E", ThirtyOne, -13, W }, { (char*)" E+ / Fb", ThirtyOne, -12, L }, { (char*)" E# / Fd", ThirtyOne, -11, M }, { (char*)" F", ThirtyOne, -10, W }, { (char*)" F+", ThirtyOne, -9, R }, { (char*)" F#", ThirtyOne, -8, Y }, { (char*)" Gb", ThirtyOne, -7, C }, { (char*)" Gd", ThirtyOne, -6, I }, { (char*)" G", ThirtyOne, -5, W }, { (char*)" G+", ThirtyOne, -4, R }, { (char*)" G#", ThirtyOne, -3, Y }, { (char*)" Ab", ThirtyOne, -2, C }, { (char*)" Ad", ThirtyOne, -1, I }, { (char*)" A", ThirtyOne, 0, W }, { (char*)" A+", ThirtyOne, 1, R }, { (char*)" A#", ThirtyOne, 2, Y }, { (char*)" Bb", ThirtyOne, 3, C }, { (char*)" Bd", ThirtyOne, 4, I }, { (char*)" B", ThirtyOne, 5, W }, { (char*)" Cb / B+", ThirtyOne, 6, L }, { (char*)" Cd / B#", ThirtyOne, 7, M }, // 41 EDO, whole tone = 7, #/b = 4, +/d = 2, ^/v = 1 { (char*)" C (vB#)", FortyOne, -31, W }, { (char*)" ^C / B#", FortyOne, -30, c }, { (char*)" C+ ", FortyOne, -29, O }, { (char*)" vC# / Db", FortyOne, -28, I }, { (char*)" C# / ^Db", FortyOne, -27, R }, { (char*)" Dd", FortyOne, -26, B }, { (char*)" vD", FortyOne, -25, y }, { (char*)" D", FortyOne, -24, W }, { (char*)" ^D", FortyOne, -23, c }, { (char*)" D+", FortyOne, -22, O }, { (char*)" vD# / Eb", FortyOne, -21, I }, { (char*)" D# / ^Eb", FortyOne, -20, R }, { (char*)" Ed", FortyOne, -19, B }, { (char*)" vE", FortyOne, -18, y }, { (char*)" (^Fb) E", FortyOne, -17, W }, { (char*)" Fd / ^E", FortyOne, -16, c }, { (char*)" vF / E+", FortyOne, -15, y }, { (char*)" F (vE#)", FortyOne, -14, W }, { (char*)" ^F / E#", FortyOne, -13, c }, { (char*)" F+", FortyOne, -12, O }, { (char*)" Gb / vF#", FortyOne, -11, I }, { (char*)" ^Gb / F#", FortyOne, -10, R }, { (char*)" Gd", FortyOne, -9, B }, { (char*)" vG", FortyOne, -8, y }, { (char*)" G", FortyOne, -7, W }, { (char*)" ^G", FortyOne, -6, c }, { (char*)" G+", FortyOne, -5, O }, { (char*)" vG# / Ab", FortyOne, -4, I }, { (char*)" G# / ^Ab", FortyOne, -3, R }, { (char*)" Ad", FortyOne, -2, B }, { (char*)" vA", FortyOne, -1, y }, { (char*)" A", FortyOne, 0, W }, { (char*)" ^A", FortyOne, 1, c }, { (char*)" A+", FortyOne, 2, O }, { (char*)" vA# / Bb", FortyOne, 3, I }, { (char*)" A# / ^Bb", FortyOne, 4, R }, { (char*)" Bd", FortyOne, 5, B }, { (char*)" vB", FortyOne, 6, y }, { (char*)" (^Cb) B", FortyOne, 7, W }, { (char*)" Cd / ^B", FortyOne, 8, c }, { (char*)" vC / B+", FortyOne, 9, y }, // 53 EDO, whole tone = 9, #/b = 5, >/< = 2, ^/v = 1 { (char*)" C (vB#)", FiftyThree, -40, W }, { (char*)" ^C / B#", FiftyThree, -39, c }, { (char*)" >C / Db", FiftyThree, -34, B }, { (char*)" >C# / D / Eb", FiftyThree, -25, B }, { (char*)" >D# / Fb) ^E", FiftyThree, -21, c }, { (char*)" E", FiftyThree, -20, G }, { (char*)" vF (F / Gb", FiftyThree, -12, B }, { (char*)" >F# / G / Ab", FiftyThree, -3, B }, { (char*)" >G# / A", FiftyThree, 2, l }, { (char*)" vBb / Bb / ^A#", FiftyThree, 6, B }, { (char*)" A#", FiftyThree, 7, g }, { (char*)" Cb / vB", FiftyThree, 8, y }, { (char*)"(^Cb) B", FiftyThree, 9, W }, { (char*)"(>Cb) ^B", FiftyThree, 10, c }, { (char*)" B", FiftyThree, 11, G }, { (char*)" vC (= rowCount) || (c.col < 0) || (c.col >= (2 * colCount)) || ((c.col + c.row) & 1); } byte coordToIndex(coordinates c) { if (hexOOB(c)) { return 255; } else { return (10 * c.row) + (c.col / 2); }; } coordinates hexVector(byte direction, byte distance) { coordinates temp; int8_t vertical[] = {0,-1,-1, 0, 1,1}; int8_t horizontal[] = {2, 1,-1,-2,-1,1}; temp.row = vertical[direction] * distance; temp.col = horizontal[direction] * distance; return temp; } coordinates hexOffset(coordinates a, coordinates b) { coordinates temp; temp.row = a.row + b.row; temp.col = a.col + b.col; return temp; } coordinates hexDistance(coordinates origin, coordinates destination) { coordinates temp; temp.row = destination.row - origin.row; temp.col = destination.col - origin.col; return temp; } float freqToMIDI(float Hz) { // formula to convert from Hz to MIDI note return 69.0 + 12.0 * log2f(Hz / 440.0); } float MIDItoFreq(float MIDI) { // formula to convert from MIDI note to Hz return 440.0 * exp2((MIDI - 69.0) / 12.0); } float stepsToMIDI(int16_t stepsFromA) { // return the MIDI pitch associated return freqToMIDI(concertA) + ((float)stepsFromA * (float)current.tuning().stepSize / 100.0); } // ====== diagnostic wrapper void sendToLog(String msg) { if (diagnostics) { Serial.println(msg); }; } // ====== LED routines int16_t transformHue(float D) { if ((!perceptual) || (D > 360.0)) { return 65536 * (D / 360.0); } else { // red yellow green blue int hueIn[] = { 0, 9, 18, 90, 108, 126, 135, 150, 198, 243, 252, 261, 306, 333, 360}; // #ff0000 #ffff00 #00ff00 #00ffff #0000ff #ff00ff int hueOut[] = { 0, 3640, 5461,10922,12743,16384,21845,27306,32768,38229,43690,49152,54613,58254,65535}; byte B = 0; while (D - hueIn[B] > 0) { B++; }; return hueOut[B - 1] + (hueOut[B] - hueOut[B - 1]) * ((D - (float)hueIn[B - 1])/(float)(hueIn[B] - hueIn[B - 1])); }; } void resetHexLEDs() { // calculate color codes for each hex, store for playback int16_t hue; float hueDegrees; byte sat; colors c; for (byte i = 0; i < hexCount; i++) { if (!(h[i].isCmd)) { byte scaleDegree = positiveMod(h[i].steps + current.key().offset - current.findC(),current.tuning().cycleLength); switch (colorMode) { case 1: c = keyOptions[current.keysBegin() + scaleDegree].tierColor; hueDegrees = hueCode[c]; sat = satCode[c]; break; default: hueDegrees = 360.0 * ((float)scaleDegree / (float)current.tuning().cycleLength); sat = 255; break; }; hue = transformHue(hueDegrees); h[i].LEDcolorPlay = strip.gamma32(strip.ColorHSV(hue,sat,VeryBRIGHT)); h[i].LEDcolorOn = strip.gamma32(strip.ColorHSV(hue,sat,BRIGHT)); h[i].LEDcolorOff = strip.gamma32(strip.ColorHSV(hue,sat,DIM)); h[i].LEDcolorAnim = strip.ColorHSV(hue,0,255); } else { // }; }; } // ====== layout routines void assignPitches() { // run this if the layout, key, or transposition changes, but not if color or scale changes sendToLog("assignPitch was called:"); for (byte i = 0; i < hexCount; i++) { if (!(h[i].isCmd)) { float N = stepsToMIDI(h[i].steps + current.key().offset + current.transpose); if (N < 0 || N >= 128) { h[i].note = 255; h[i].bend = 0; h[i].frequency = 0.0; } else { h[i].note = ((N >= 127) ? 127 : round(N)); h[i].bend = (ldexp(N - h[i].note, 13) / defaultPBRange); h[i].frequency = MIDItoFreq(N); }; sendToLog(String( "hex #" + String(i) + ", " + "steps=" + String(h[i].steps) + ", " + "isCmd? " + String(h[i].isCmd) + ", " + "note=" + String(h[i].note) + ", " + "bend=" + String(h[i].bend) + ", " + "freq=" + String(h[i].frequency) + ", " + "inScale? " + String(h[i].inScale) + "." )); }; }; sendToLog("assignPitches complete."); } void applyScale() { sendToLog("applyScale was called:"); for (byte i = 0; i < hexCount; i++) { if (!(h[i].isCmd)) { byte degree = positiveMod(h[i].steps, current.tuning().cycleLength); byte whichByte = degree / 8; byte bitShift = 7 - (degree - (whichByte << 3)); byte digitMask = 1 << bitShift; h[i].inScale = (current.scale().step[whichByte] & digitMask) >> bitShift; sendToLog(String( "hex #" + String(i) + ", " + "steps=" + String(h[i].steps) + ", " + "isCmd? " + String(h[i].isCmd) + ", " + "note=" + String(h[i].note) + ", " + "inScale? " + String(h[i].inScale) + "." )); }; }; resetHexLEDs(); sendToLog("applyScale complete."); } void applyLayout() { // call this function when the layout changes sendToLog("buildLayout was called:"); for (byte i = 0; i < hexCount; i++) { if (!(h[i].isCmd)) { coordinates dist = hexDistance(h[current.layout().rootHex].coords, h[i].coords); h[i].steps = ( (dist.col * current.layout().acrossSteps) + (dist.row * ( current.layout().acrossSteps + (2 * current.layout().dnLeftSteps) )) ) / 2; sendToLog(String( "hex #" + String(i) + ", " + "steps=" + String(h[i].steps) + "." )); }; }; applyScale(); // when layout changes, have to re-apply scale and re-apply LEDs assignPitches(); // same with pitches u8g2.setDisplayRotation(current.layout().isPortrait ? U8G2_R2 : U8G2_R1); // and landscape / portrait rotation sendToLog("buildLayout complete."); } // ====== buzzer routines byte nextHeldNote() { byte n = 255; for (byte i = 1; i < hexCount; i++) { byte checkNote = positiveMod(currentBuzzNote + i, hexCount); if ((h[checkNote].channel) && (!h[checkNote].isCmd)) { n = checkNote; break; }; }; return n; } void buzz(byte x) { // send 128 or larger to turn off tone currentBuzzNote = x; if ((!(h[x].isCmd)) && (h[x].note < 128) && (h[x].frequency < 32767)) { //piezoBuzzer.tone(h[x].frequency, (float)velWheel.curValue * (100.0 / 128.0), 16384, TIME_MS); tone(tonePin, h[x].frequency); // stock TONE library, but frequency changed to float } else { //piezoBuzzer.stop_tone(); noTone(tonePin); // stock TONE library }; } // ====== MIDI routines void setPitchBendRange(byte Ch, byte semitones) { MIDI.beginRpn(0, Ch); MIDI.sendRpnValue(semitones << 7, Ch); MIDI.endRpn(Ch); sendToLog(String( "set pitch bend range on ch " + String(Ch) + " to be " + String(semitones) + " semitones" )); } void setMPEzone(byte masterCh, byte sizeOfZone) { MIDI.beginRpn(6, masterCh); MIDI.sendRpnValue(sizeOfZone << 7, masterCh); MIDI.endRpn(masterCh); sendToLog(String( "tried sending MIDI msg to set MPE zone, master ch " + String(masterCh) + ", zone of this size: " + String(sizeOfZone) )); } void prepMIDIforMicrotones() { bool makeZone = (MPE && (current.tuningIndex != Twelve)); // if MPE flag is on and tuning <> 12EDO setMPEzone(1, (8 * makeZone)); // MPE zone 1 = ch 2 thru 9 (or reset if not using MPE) delay(ccMsgCoolDown); setMPEzone(16, (5 * makeZone)); // MPE zone 16 = ch 11 thru 15 (or reset if not using MPE) delay(ccMsgCoolDown); for (byte i = 1; i <= 16; i++) { setPitchBendRange(i, defaultPBRange); // some synths try to set PB range to 48 semitones. delay(ccMsgCoolDown); // this forces it back to the expected range of 2 semitones. if ((i != 10) && ((!makeZone) || ((i > 1) && (i < 16)))) { openChannelQueue.push(i); sendToLog(String("pushed ch " + String(i) + " to the open channel queue")); }; channelBend[i - 1] = 0; channelPoly[i - 1] = 0; }; } void chgModulation() { if (current.tuningIndex == Twelve) { MIDI.sendControlChange(1, modWheel.curValue, 1); sendToLog(String("sent mod value " + String(modWheel.curValue) + " to ch 1")); } else if (MPE) { MIDI.sendControlChange(1, modWheel.curValue, 1); sendToLog(String("sent mod value " + String(modWheel.curValue) + " to ch 1")); MIDI.sendControlChange(1, modWheel.curValue, 16); sendToLog(String("sent mod value " + String(modWheel.curValue) + " to ch 16")); } else { for (byte i = 0; i < 16; i++) { MIDI.sendControlChange(1, modWheel.curValue, i + 1); sendToLog(String("sent mod value " + String(modWheel.curValue) + " to ch " + String(i+1))); }; }; }; void chgUniversalPB() { if (current.tuningIndex == Twelve) { MIDI.sendPitchBend(pbWheel.curValue, 1); sendToLog(String("sent pb value " + String(pbWheel.curValue) + " to ch 1")); } else if (MPE) { MIDI.sendPitchBend(pbWheel.curValue, 1); sendToLog(String("sent pb value " + String(pbWheel.curValue) + " to ch 1")); MIDI.sendPitchBend(pbWheel.curValue, 16); sendToLog(String("sent pb value " + String(pbWheel.curValue) + " to ch 16")); } else { for (byte i = 0; i < 16; i++) { MIDI.sendPitchBend(channelBend[i] + pbWheel.curValue, i + 1); sendToLog(String("sent pb value " + String(channelBend[i] + pbWheel.curValue) + " to ch " + String(i+1))); }; }; } byte assignChannel(byte x) { if (current.tuningIndex == Twelve) { return 1; } else { byte temp = 17; for (byte c = MPE; c < (16 - MPE); c++) { // MPE - look at ch 2 thru 15 [c 1-14]; otherwise ch 1 thru 16 [c 0-15] if ((c + 1 != 10) && (h[x].bend == channelBend[c])) { // not using drum channel ch 10 in either case temp = c + 1; sendToLog(String("found a matching channel: ch " + String(temp) + " has pitch bend " + String(channelBend[c]))); break; }; }; if (temp = 17) { if (openChannelQueue.empty()) { sendToLog(String("channel queue was empty so we didn't send a note on")); } else { temp = openChannelQueue.front(); openChannelQueue.pop(); sendToLog(String("popped " + String(temp) + " off the queue")); }; }; return temp; }; } // ====== hex press routines void noteOn(byte x) { byte c = assignChannel(x); if (c <= 16) { h[x].channel = c; // value is 1 - 16 if (current.tuningIndex != Twelve) { MIDI.sendPitchBend(h[x].bend, c); // ch 1-16 }; MIDI.sendNoteOn(h[x].note, velWheel.curValue, c); // ch 1-16 sendToLog(String( "sent note on: " + String(h[x].note) + " pb " + String(h[x].bend) + " vel " + String(velWheel.curValue) + " ch " + String(c) )); if (current.tuningIndex != Twelve) { channelPoly[c - 1]++; // array is 0 - 15 }; if (buzzer) { buzz(x); }; }; } void noteOff(byte x) { byte c = h[x].channel; if (c) { h[x].channel = 0; MIDI.sendNoteOff(h[x].note, velWheel.curValue, c); sendToLog(String( "sent note off: " + String(h[x].note) + " pb " + String(h[x].bend) + " vel " + String(velWheel.curValue) + " ch " + String(c) )); if (current.tuningIndex != Twelve) { switch (channelPoly[c - 1]) { case 1: channelPoly[c - 1]--; openChannelQueue.push(c); break; case 0: break; default: channelPoly[c - 1]--; break; }; }; if (buzzer) { buzz(nextHeldNote()); }; }; } void cmdOn(byte x) { // volume and mod wheel read all current buttons switch (h[x].note) { case cmdCode + 3: toggleWheel = !toggleWheel; // recolorHex(x); break; default: // the rest should all be taken care of within the wheelDef structure break; }; } void cmdOff(byte x) { // pitch bend wheel only if buttons held. // nothing; should all be taken care of within the wheelDef structure } // ====== animations void flagToAnimate(coordinates C) { if (!hexOOB(C)) { h[coordToIndex(C)].animate = 1; }; } void animateMirror() { for (byte i = 0; i < hexCount; i++) { // check every hex if ((!(h[i].isCmd)) && (h[i].channel)) { // that is a held note for (byte j = 0; j < hexCount; j++) { // compare to every hex if ((!(h[j].isCmd)) && (!(h[j].channel))) { // that is a note not being played int16_t temp = h[i].steps - h[j].steps; // look at difference between notes if (animationType == OctaveAnim) { // set octave diff to zero if need be temp = positiveMod(temp, current.tuning().cycleLength); }; if (temp == 0) { // highlight if diff is zero h[j].animate = 1; }; }; }; }; }; } void animateOrbit() { for (byte i = 0; i < hexCount; i++) { // check every hex if ((!(h[i].isCmd)) && (h[i].channel)) { // that is a held note flagToAnimate(hexOffset(h[i].coords,hexVector((h[i].animFrame() % 6),1))); // different neighbor each frame }; }; } void animateRadial() { for (byte i = 0; i < hexCount; i++) { // check every hex if (!(h[i].isCmd)) { // that is a note uint32_t radius = h[i].animFrame(); if ((radius > 0) && (radius < 16)) { // played in the last 16 frames byte steps = ((animationType == SplashAnim) ? radius : 1); // star = 1 step to next corner; ring = 1 step per hex coordinates temp = hexOffset(h[i].coords,hexVector(DnLeft,radius)); // start at one corner of the ring for (byte dir = 0; dir < 6; dir++) { // walk along the ring in each of the 6 hex directions for (byte i = 0; i < steps; i++) { // # of steps to the next corner flagToAnimate(temp); // flag for animation temp = hexOffset(temp, hexVector(dir,radius / steps)); // then next step }; }; }; }; }; } // ====== menu variables and routines // must declare these variables globally for some reason // doing so down here so we don't have to forward declare callback functions // SelectOptionByte optionByteYesOrNo[] = { { "No" , 0 }, { "Yes" , 1 } }; SelectOptionByte optionByteBuzzer[] = { { "Off" , 0 }, { "Mono" , 1 }, { "Arp'gio", 2 } }; SelectOptionByte optionByteColor[] = { { "Rainbow", 0 }, { "Tiered" , 1 } }; SelectOptionByte optionByteAnimate[] = { { "None" , NoAnim }, { "Octave" , OctaveAnim}, { "By Note", NoteAnim}, { "Star" , StarAnim}, { "Splash" , SplashAnim}, { "Orbit" , OrbitAnim} }; GEMSelect selectYesOrNo(sizeof(optionByteYesOrNo) / sizeof(SelectOptionByte), optionByteYesOrNo); GEMSelect selectBuzzer( sizeof(optionByteBuzzer) / sizeof(SelectOptionByte), optionByteBuzzer); GEMSelect selectColor( sizeof(optionByteColor) / sizeof(SelectOptionByte), optionByteColor); GEMSelect selectAnimate(sizeof(optionByteAnimate) / sizeof(SelectOptionByte), optionByteAnimate); GEMPage menuPageMain("HexBoard MIDI Controller"); GEMPage menuPageTuning("Tuning"); GEMItem menuGotoTuning("Tuning", menuPageTuning); GEMItem* menuItemTuning[tuningCount]; // dynamically generate item based on tunings GEMPage menuPageLayout("Layout"); GEMItem menuGotoLayout("Layout", menuPageLayout); GEMItem* menuItemLayout[layoutCount]; // dynamically generate item based on presets GEMPage menuPageScales("Scales"); GEMItem menuGotoScales("Scales", menuPageScales); GEMItem* menuItemScales[scaleCount]; // dynamically generate item based on presets and if allowed in given EDO tuning GEMPage menuPageKeys("Keys"); GEMItem menuGotoKeys("Keys", menuPageKeys); GEMItem* menuItemKeys[keyCount]; // dynamically generate item based on presets GEMItem menuItemScaleLock( "Scale lock?", scaleLock, selectYesOrNo); GEMItem menuItemMPE( "MPE Mode:", MPE, selectYesOrNo, prepMIDIforMicrotones); GEMItem menuItemBuzzer( "Buzzer:", buzzer, selectBuzzer); GEMItem menuItemColor( "Color mode:", colorMode, selectColor, resetHexLEDs); GEMItem menuItemPercep( "Adjust color:", perceptual, selectYesOrNo, resetHexLEDs); GEMItem menuItemAnimate( "Animation:", animationType, selectAnimate); void menuHome() { menu.setMenuPageCurrent(menuPageMain); menu.drawMenu(); } void showOnlyValidLayoutChoices() { // re-run at setup and whenever tuning changes for (byte L = 0; L < layoutCount; L++) { menuItemLayout[L]->hide((layoutOptions[L].tuning != current.tuningIndex)); }; sendToLog(String("menu: Layout choices were updated.")); } void showOnlyValidScaleChoices() { // re-run at setup and whenever tuning changes for (int S = 0; S < scaleCount; S++) { menuItemScales[S]->hide((scaleOptions[S].tuning != current.tuningIndex) && (scaleOptions[S].tuning != 255)); }; sendToLog(String("menu: Scale choices were updated.")); } void showOnlyValidKeyChoices() { // re-run at setup and whenever tuning changes for (int K = 0; K < keyCount; K++) { menuItemKeys[K]->hide((keyOptions[K].tuning != current.tuningIndex)); }; sendToLog(String("menu: Key choices were updated.")); } void changeLayout(GEMCallbackData callbackData) { // when you change the layout via the menu byte selection = callbackData.valByte; if (selection != current.layoutIndex) { current.layoutIndex = selection; applyLayout(); }; menuHome(); } void changeScale(GEMCallbackData callbackData) { // when you change the scale via the menu int selection = callbackData.valInt; if (selection != current.scaleIndex) { current.scaleIndex = selection; applyScale(); }; menuHome(); } void changeKey(GEMCallbackData callbackData) { // when you change the key via the menu int selection = callbackData.valInt; if (selection != current.keyIndex) { current.keyIndex = selection; assignPitches(); }; menuHome(); } void changeTuning(GEMCallbackData callbackData) { // not working yet byte selection = callbackData.valByte; if (selection != current.tuningIndex) { current.tuningIndex = selection; current.layoutIndex = current.layoutsBegin(); current.scaleIndex = 0; current.keyIndex = current.keysBegin(); showOnlyValidLayoutChoices(); showOnlyValidScaleChoices(); showOnlyValidKeyChoices(); applyLayout(); prepMIDIforMicrotones(); }; menuHome(); } void buildMenu() { menuPageMain.addMenuItem(menuGotoTuning); for (byte T = 0; T < tuningCount; T++) { // create pointers to all tuning choices menuItemTuning[T] = new GEMItem(tuningOptions[T].name, changeTuning, T); menuPageTuning.addMenuItem(*menuItemTuning[T]); }; menuPageMain.addMenuItem(menuGotoLayout); for (byte L = 0; L < layoutCount; L++) { // create pointers to all layouts menuItemLayout[L] = new GEMItem(layoutOptions[L].name, changeLayout, L); menuPageLayout.addMenuItem(*menuItemLayout[L]); }; showOnlyValidLayoutChoices(); menuPageMain.addMenuItem(menuGotoScales); for (int S = 0; S < scaleCount; S++) { // create pointers to all scale items, filter them as you go menuItemScales[S] = new GEMItem(scaleOptions[S].name, changeScale, S); menuPageScales.addMenuItem(*menuItemScales[S]); }; showOnlyValidScaleChoices(); menuPageMain.addMenuItem(menuGotoKeys); for (int K = 0; K < keyCount; K++) { menuItemKeys[K] = new GEMItem(keyOptions[K].name, changeKey, K); menuPageKeys.addMenuItem(*menuItemKeys[K]); }; showOnlyValidKeyChoices(); menuPageMain.addMenuItem(menuItemScaleLock); menuPageMain.addMenuItem(menuItemColor); menuPageMain.addMenuItem(menuItemBuzzer); menuPageMain.addMenuItem(menuItemAnimate); menuPageMain.addMenuItem(menuItemMPE); menuPageMain.addMenuItem(menuItemPercep); } // ====== setup routines void setupMIDI() { usb_midi.setStringDescriptor("HexBoard MIDI"); // Initialize MIDI, and listen to all MIDI channels MIDI.begin(MIDI_CHANNEL_OMNI); // This will also call usb_midi's begin() } void setupFileSystem() { Serial.begin(115200); // Set serial to make uploads work without bootsel button LittleFSConfig cfg; // Configure file system defaults cfg.setAutoFormat(true); // Formats file system if it cannot be mounted. LittleFS.setConfig(cfg); LittleFS.begin(); // Mounts file system. if (!LittleFS.begin()) { Serial.println("An Error has occurred while mounting LittleFS"); } } void setupPins() { for (byte p = 0; p < sizeof(columnPins); p++) // For each column pin... { pinMode(columnPins[p], INPUT_PULLUP); // set the pinMode to INPUT_PULLUP (+3.3V / HIGH). } for (byte p = 0; p < sizeof(multiplexPins); p++) // For each column pin... { pinMode(multiplexPins[p], OUTPUT); // Setting the row multiplexer pins to output. } Wire.setSDA(lightPinSDA); Wire.setSCL(lightPinSCL); pinMode(rotaryPinC, INPUT_PULLUP); } void setupGrid() { sendToLog(String("initializing hex grid...")); for (byte i = 0; i < hexCount; i++) { h[i].coords = indexToCoord(i); h[i].isCmd = 0; h[i].note = 255; h[i].keyState = 0; }; for (byte c = 0; c < cmdCount; c++) { h[assignCmd[c]].isCmd = 1; h[assignCmd[c]].note = cmdCode + c; }; applyLayout(); } void setupLEDs() { // need layout strip.begin(); // INITIALIZE NeoPixel strip object strip.show(); // Turn OFF all pixels ASAP resetHexLEDs(); } void setupMenu() { // need menu menu.setSplashDelay(0); menu.init(); buildMenu(); menuHome(); } void setupGFX() { u8g2.begin(); // Menu and graphics setup u8g2.setBusClock(1000000); // Speed up display u8g2.setContrast(defaultContrast); // Set contrast } void testDiagnostics() { sendToLog(String("theHDM was here")); } // ====== loop routines void timeTracker() { lapTime = runTime - loopTime; // sendToLog(String(lapTime)); // Print out the time it takes to run each loop loopTime = runTime; // Update previousTime variable to give us a reference point for next loop runTime = millis(); // Store the current time in a uniform variable for this program loop } void screenSaver() { if (screenTime <= screenSaverMillis) { screenTime = screenTime + lapTime; if (screenSaverOn) { screenSaverOn = 0; u8g2.setContrast(defaultContrast); } } else { if (!screenSaverOn) { screenSaverOn = 1; u8g2.setContrast(1); } } } void readHexes() { for (byte r = 0; r < rowCount; r++) { // Iterate through each of the row pins on the multiplexing chip. for (byte d = 0; d < 4; d++) { digitalWrite(multiplexPins[d], (r >> d) & 1); } for (byte c = 0; c < colCount; c++) { // Now iterate through each of the column pins that are connected to the current row pin. byte p = columnPins[c]; // Hold the currently selected column pin in a variable. pinMode(p, INPUT_PULLUP); // Set that row pin to INPUT_PULLUP mode (+3.3V / HIGH). delayMicroseconds(10); // Delay to give the pin modes time to change state (false readings are caused otherwise). bool didYouPressHex = (digitalRead(p) == LOW); // hex is pressed if it returns LOW. else not pressed h[c + (r * colCount)].updateKeyState(didYouPressHex); pinMode(p, INPUT); // Set the selected column pin back to INPUT mode (0V / LOW). } } } void actionHexes() { for (byte i = 0; i < hexCount; i++) { // For all buttons in the deck switch (h[i].keyState) { case 1: // just pressed if (h[i].isCmd) { cmdOn(i); } else if (h[i].inScale || (!scaleLock)) { noteOn(i); }; break; case 2: // just released if (h[i].isCmd) { cmdOff(i); } else if (h[i].inScale || (!scaleLock)) { noteOff(i); }; break; case 3: // held break; default: // inactive break; }; }; } void arpeggiate() { if (buzzer > 1) { if (runTime - currentBuzzTime > arpeggiateLength) { currentBuzzTime = millis(); byte nextNoteToBuzz = nextHeldNote(); if (nextNoteToBuzz < cmdCode) { buzz(nextNoteToBuzz); }; }; }; } void updateWheels() { velWheel.setTargetValue(); bool upd = velWheel.updateValue(); // this function returns a boolean, gotta put it somewhere even if it isn't being used if (upd) { sendToLog(String("vel became " + String(velWheel.curValue))); } if (toggleWheel) { pbWheel.setTargetValue(); upd = pbWheel.updateValue(); if (upd) { chgUniversalPB(); }; } else { modWheel.setTargetValue(); upd = modWheel.updateValue(); if (upd) { chgModulation(); }; }; } void animateLEDs() { // TBD for (byte i = 0; i < hexCount; i++) { h[i].animate = 0; }; if (animationType) { switch (animationType) { case StarAnim: case SplashAnim: animateRadial(); break; case OrbitAnim: animateOrbit(); break; case OctaveAnim: case NoteAnim: animateMirror(); break; default: break; }; }; } byte byteLerp(byte xOne, byte xTwo, float yOne, float yTwo, float y) { float weight = (y - yOne) / (yTwo - yOne); int temp = xOne + ((xTwo - xOne) * weight); if (temp < xOne) {temp = xOne;}; if (temp > xTwo) {temp = xTwo;}; return temp; } void lightUpLEDs() { for (byte i = 0; i < hexCount; i++) { if (!(h[i].isCmd)) { if (h[i].animate) { strip.setPixelColor(i,h[i].LEDcolorAnim); } else if (h[i].channel) { strip.setPixelColor(i,h[i].LEDcolorPlay); } else if (h[i].inScale) { strip.setPixelColor(i,h[i].LEDcolorOn); } else { strip.setPixelColor(i,h[i].LEDcolorOff); }; }; }; int16_t hueV = transformHue((runTime / rainbowDegreeTime) % 360); strip.setPixelColor(assignCmd[0],strip.gamma32(strip.ColorHSV( hueV,192,byteLerp(0,255,85,127,velWheel.curValue) ))); strip.setPixelColor(assignCmd[1],strip.gamma32(strip.ColorHSV( hueV,192,byteLerp(0,255,42,85,velWheel.curValue) ))); strip.setPixelColor(assignCmd[2],strip.gamma32(strip.ColorHSV( hueV,192,byteLerp(0,255,0,42,velWheel.curValue) ))); if (toggleWheel) { // pb red / green int16_t hueP = transformHue((pbWheel.curValue > 0) ? 0 : 180); byte satP = byteLerp(0,255,0,8192,abs(pbWheel.curValue)); strip.setPixelColor(assignCmd[3],strip.gamma32(strip.ColorHSV( 0,0,64 ))); strip.setPixelColor(assignCmd[4],strip.gamma32(strip.ColorHSV( transformHue(0),satP * (pbWheel.curValue > 0),satP * (pbWheel.curValue > 0) ))); strip.setPixelColor(assignCmd[5],strip.gamma32(strip.ColorHSV( hueP,satP,255 ))); strip.setPixelColor(assignCmd[6],strip.gamma32(strip.ColorHSV( transformHue(180),satP * (pbWheel.curValue < 0),satP * (pbWheel.curValue < 0) ))); } else { // mod blue / yellow int16_t hueM = transformHue((modWheel.curValue > 63) ? 90 : 270); byte satM = byteLerp(0,255,0,64,abs(modWheel.curValue - 63)); strip.setPixelColor(assignCmd[3],strip.gamma32(strip.ColorHSV(0,0,128))); strip.setPixelColor(assignCmd[4],strip.gamma32(strip.ColorHSV( hueM,satM,((modWheel.curValue > 63) ? satM : 0) ))); strip.setPixelColor(assignCmd[5],strip.gamma32(strip.ColorHSV( hueM,satM,((modWheel.curValue > 63) ? 127 + (satM / 2) : 127 - (satM / 2)) ))); strip.setPixelColor(assignCmd[6],strip.gamma32(strip.ColorHSV( hueM,satM,127 + (satM / 2) ))); }; strip.show(); } void dealWithRotary() { if (menu.readyForKey()) { rotaryIsClicked = digitalRead(rotaryPinC); if (rotaryIsClicked > rotaryWasClicked) { menu.registerKeyPress(GEM_KEY_OK); screenTime = 0; } rotaryWasClicked = rotaryIsClicked; if (rotaryKnobTurns != 0) { for (byte i = 0; i < abs(rotaryKnobTurns); i++) { menu.registerKeyPress(rotaryKnobTurns < 0 ? GEM_KEY_UP : GEM_KEY_DOWN); } rotaryKnobTurns = 0; screenTime = 0; } } } void readMIDI() { MIDI.read(); } void keepTrackOfRotaryKnobTurns() { switch (rotary.process()) { case DIR_CW: rotaryKnobTurns++; break; case DIR_CCW: rotaryKnobTurns--; break; } } // ====== setup() and loop() void setup() { #if (defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)) TinyUSB_Device_Init(0); // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040 #endif setupMIDI(); setupFileSystem(); setupPins(); testDiagnostics(); // Print diagnostic troubleshooting information to serial monitor setupGrid(); setupLEDs(); setupGFX(); setupMenu(); for (byte i = 0; i < 5 && !TinyUSBDevice.mounted(); i++) { delay(1); // wait until device mounted, maybe }; } void setup1() { // }; void loop() { // run on first core timeTracker(); // Time tracking functions screenSaver(); // Reduces wear-and-tear on OLED panel readHexes(); // Read and store the digital button states of the scanning matrix actionHexes(); // actions on hexes arpeggiate(); // arpeggiate the buzzer updateWheels(); // deal with the pitch/mod wheel animateLEDs(); // deal with animations lightUpLEDs(); // refresh LEDs dealWithRotary(); // deal with menu readMIDI(); } void loop1() { // run on second core keepTrackOfRotaryKnobTurns(); }