Firmware for HexBoard MIDI controller
Diffstat (limited to 'src/HexBoard.ino')
| -rw-r--r-- | src/HexBoard.ino | 4764 |
1 files changed, 4764 insertions, 0 deletions
diff --git a/src/HexBoard.ino b/src/HexBoard.ino new file mode 100644 index 0000000..a4881b5 --- /dev/null +++ b/src/HexBoard.ino @@ -0,0 +1,4764 @@ +// @readme + /* + HexBoard + Copyright 2022-2025 Jared DeCook and Zach DeCook + with help from Nicholas Fox + Licensed under the GNU GPL Version 3. + + Hardware information: + Generic RP2040 running at 133MHz with 16MB of flash + https://github.com/earlephilhower/arduino-pico + Additional board manager URL: + https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json + Tools > USB Stack > (Adafruit TinyUSB) + Sketch > Export Compiled Binary + + Compilation instructions: + Using arduino-cli... + # Download the board index + arduino-cli --additional-urls=https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json core update-index + # Install the core for rp2040 + arduino-cli --additional-urls=https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json core download rp2040:rp2040 + arduino-cli --additional-urls=https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json core install rp2040:rp2040 + # Install libraries + arduino-cli lib install "MIDI library" + arduino-cli lib install "Adafruit NeoPixel" + arduino-cli lib install "U8g2" # dependency for GEM + arduino-cli lib install "Adafruit GFX Library" # dependency for GEM + arduino-cli lib install "GEM" + sed -i 's@#include "config/enable-glcd.h"@//\0@g' ~/Arduino/libraries/GEM/src/config.h # remove dependency from GEM - I think this is unnecessary now. + # Run Make to build the firmware + make + --------------------------- + New to programming Arduino? + --------------------------- + Coding the Hexboard is, basically, done in C++. + + When the HexBoard is plugged in, it runs + void setup() and void setup1(), then + runs void loop() and void loop1() on an + infinite loop until the HexBoard powers down. + There are two cores running independently. + You can pretend that the compiler tosses + these two routines inside an int main() for + each processor. + + To #include libraries, the Arduino + compiler expects them to be installed from + a centralized repository. You can also bring + your own .h / .cpp code but it must be saved + in "/src/____/___.h" to be valid. + + We found this really annoying so to the + extent possible we have consolidated + this code into one single .ino sketch file. + However, the code is sectioned into something + like a library format for each feature + of the HexBoard, so that if the code becomes + too long to manage in a single file in the + future, it is easier to air-lift parts of + the code into a library at that point. + */ + +// @init + #include <Arduino.h> // this is necessary to talk to the Hexboard! + #include <Wire.h> // this is necessary to connect with I2C devices (such as the oled display) + #define SDAPIN 16 + #define SCLPIN 17 + #include <GEM_u8g2.h> // library of code to create menu objects on the B&W display + #include <numeric> // need that GCD function, son + #include <string> // standard C++ library string classes (use "std::string" to invoke it); these do not cause the memory corruption that Arduino::String does. + #include <queue> // standard C++ library construction to store open channels in microtonal mode (use "std::queue" to invoke it) +// Software-detected hardware revision + #define HARDWARE_UNKNOWN 0 + #define HARDWARE_V1_1 1 + #define HARDWARE_V1_2 2 + byte Hardware_Version = 0; // 0 = unknown, 1 = v1.1 board. 2 = v1.2 board. + + + +///////// global variables and defines /////////////////////////////////////////////// + + bool forceEnableMPE = false; + byte defaultMidiChannel = 1; + byte layoutRotation = 0; + + // Keyboard layout swapping + bool mirrorLeftRight = false; + bool mirrorUpDown = false; + + + // Helper, might be redundant + std::vector<byte> pressedKeyIDs = {}; + + + // Just Intonation related global variables + byte justIntonationBPM = 60; + byte justIntonationBPM_Multiplier = 1; + bool useJustIntonationBPM = false; + bool useDynamicJustIntonation = false; + +///////////////////////////////////////////////////////////////////////////////////////////////// + + + +// @helpers + /* + C++ returns a negative value for + negative N % D. This function + guarantees the mod value is always + positive. + */ + int positiveMod(int n, int d) { + return (((n % d) + d) % d); + } + /* + There may already exist linear interpolation + functions in the standard library. This one is helpful + because it will do the weighting division for you. + It only works on byte values since it's intended + to blend color values together. A better C++ + coder may be able to allow automatic type casting here. + */ + byte byteLerp(byte xOne, byte xTwo, float yOne, float yTwo, float y) { + float weight = (y - yOne) / (yTwo - yOne); + int temp = xOne + ((xTwo - xOne) * weight); + if (temp < xOne) {temp = xOne;} + if (temp > xTwo) {temp = xTwo;} + return temp; + } + +// @defaults + /* + This section sets default values + for user-editable options + */ + int transposeSteps = 0; + bool scaleLock = 0; + bool perceptual = 1; + bool paletteBeginsAtKeyCenter = 1; + byte animationFPS = 32; // actually frames per 2^20 microseconds. close enough to 30fps + + byte wheelMode = 0; // standard vs. fine tune mode + byte modSticky = 0; + byte pbSticky = 0; + byte velSticky = 1; + int modWheelSpeed = 8; + int pbWheelSpeed = 1024; + int velWheelSpeed = 8; + + #define SYNTH_OFF 0 + #define SYNTH_MONO 1 + #define SYNTH_ARPEGGIO 2 + #define SYNTH_POLY 3 + byte playbackMode = SYNTH_OFF; + + #define WAVEFORM_SINE 0 + #define WAVEFORM_STRINGS 1 + #define WAVEFORM_CLARINET 2 + #define WAVEFORM_HYBRID 7 + #define WAVEFORM_SQUARE 8 + #define WAVEFORM_SAW 9 + #define WAVEFORM_TRIANGLE 10 + byte currWave = WAVEFORM_HYBRID; + + #define RAINBOW_MODE 0 + #define TIERED_COLOR_MODE 1 + #define ALTERNATE_COLOR_MODE 2 + #define RAINBOW_OF_FIFTHS_MODE 3 + #define PIANO_ALT_COLOR_MODE 4 + #define PIANO_COLOR_MODE 5 + #define PIANO_INCANDESCENT_COLOR_MODE 6 + byte colorMode = RAINBOW_MODE; + + #define ANIMATE_NONE 0 + #define ANIMATE_STAR 1 + #define ANIMATE_SPLASH 2 + #define ANIMATE_ORBIT 3 + #define ANIMATE_OCTAVE 4 + #define ANIMATE_BY_NOTE 5 + #define ANIMATE_BEAMS 6 + #define ANIMATE_SPLASH_REVERSE 7 + #define ANIMATE_STAR_REVERSE 8 + byte animationType = ANIMATE_NONE; + + #define BRIGHT_MAX 255 + #define BRIGHT_HIGH 210 + #define BRIGHT_MID 180 + #define BRIGHT_LOW 150 + #define BRIGHT_DIM 110 + #define BRIGHT_DIMMER 70 + #define BRIGHT_DARK 50 // BRIGHT_DIMMEST + #define BRIGHT_DARKER 34 // Lowest brightness before backlight shuts down + #define BRIGHT_FAINT 33 // Highest brightness before backlight turns on + #define BRIGHT_FAINTER 24 // Lowest brightness before any highlighted button is lit in all color modes + #define BRIGHT_OFF 0 + byte globalBrightness = BRIGHT_DIM; + +// @microtonal + /* + Most users will stick to playing in standard Western + tuning, but for those looking to play microtonally, + the Hexboard accommodates equal step tuning systems + of any arbitrary size. + */ + /* + Each tuning system needs to be + pre-defined, pre-counted, and enumerated as below. + Future editions of this sketch may enable free + definition and smart pointer references to tuning + presets without requiring an enumeration. + */ + #define TUNING_12EDO 0 + #define TUNING_12EDO_ZETA 1 + #define TUNING_17EDO 2 + #define TUNING_19EDO 3 + #define TUNING_22EDO 4 + #define TUNING_24EDO 5 + #define TUNING_31EDO 6 + #define TUNING_31EDO_ZETA 7 + #define TUNING_41EDO 8 + #define TUNING_43EDO 9 + #define TUNING_46EDO 10 + #define TUNING_53EDO 11 + #define TUNING_58EDO 12 + #define TUNING_58EDO_ZETA 13 + #define TUNING_72EDO 14 + #define TUNING_72EDO_ZETA 15 + #define TUNING_80EDO 16 + #define TUNING_87EDO 17 + #define TUNING_BP 18 + #define TUNING_ALPHA 19 + #define TUNING_BETA 20 + #define TUNING_GAMMA 21 + #define TUNINGCOUNT 22 + /* + Note names and palette arrays are allocated in memory + at runtime. Their usable size is based on the number + of steps (in standard tuning, semitones) in a tuning + system before a new period is reached (in standard + tuning, the octave). This value provides a maximum + array size that handles almost all useful tunings + without wasting much space. + */ + #define MAX_SCALE_DIVISIONS 87 + /* + A dictionary of musical scales is defined in the code. + A scale is tied to one tuning system, with the exception + of "no scale" (i.e. every note is part of the scale). + "No scale" is tied to this value "ALL_TUNINGS" so it can + always be chosen in the menu. + */ + #define ALL_TUNINGS 255 + /* + MIDI notes are enumerated 0-127 (7 bits). + Values of 128-255 can be used to indicate + command instructions for non-note buttons. + These definitions support this function. + */ + #define CMDB 192 + #define UNUSED_NOTE 255 + /* + When sending smoothly-varying pitch bend + or modulation messages over MIDI, the + code uses a cool-down period of about + 1/30 of a second in between messages, enough + for changes to sound continuous without + overloading the MIDI message queue. + */ + #define CC_MSG_COOLDOWN_MICROSECONDS 32768 + /* + This class provides the seed values + needed to map buttons to note frequencies + and palette colors, and to populate + the menu with correct key names and + scale choices, for a given equal step + tuning system. + */ + class tuningDef { + public: + std::string name; // limit is 17 characters for GEM menu + byte cycleLength; // steps before period/cycle/octave repeats + float stepSize; // in cents, 100 = "normal" semitone. + SelectOptionInt keyChoices[MAX_SCALE_DIVISIONS]; + int spanCtoA() { + return keyChoices[0].val_int; + } + }; + /* + Note that for all practical musical purposes, + expressing step sizes to six significant figures is + sufficient to eliminate any detectable tuning artifacts + due to rounding. + + The note names are formatted in an array specifically to + match the format needed for the GEM Menu to accept directly + as a spinner selection item. The number next to the note name + is the number of steps from the anchor note A that key is. + + There are other ways the tuning could be calculated. + Some microtonal players choose an anchor note + other than A 440. Future versions will allow for + more flexibility in anchor selection, which will also + change the implementation of key options. + */ + + /* + Sko: I felt like maximizing precision for just intonation purposes. + Values are precalculated by compiler, and MIDI 2.0 or later might benefit from it + */ + tuningDef tuningOptions[] = { + { "12 EDO", 12, 100.000, + {{"C" ,-9},{"C#",-8},{"D" ,-7},{"Eb",-6},{"E" ,-5},{"F",-4} + ,{"F#",-3},{"G" ,-2},{"G#",-1},{"A" , 0},{"Bb", 1},{"B", 2} + }}, + { "12 EDO Zeta peak", 12, 99.8071515654111465, + {{"C" ,-9},{"C#",-8},{"D" ,-7},{"Eb",-6},{"E" ,-5},{"F",-4} + ,{"F#",-3},{"G" ,-2},{"G#",-1},{"A" , 0},{"Bb", 1},{"B", 2} + }}, + { "17 EDO", 17, 1200.0/17.0, + {{"C",-13},{"Db",-12},{"C#",-11},{"D",-10},{"Eb",-9},{"D#",-8} + ,{"E", -7},{"F" , -6},{"Gb", -5},{"F#",-4},{"G", -3},{"Ab",-2} + ,{"G#",-1},{"A" , 0},{"Bb", 1},{"A#", 2},{"B", 3} + }}, + { "19 EDO", 19, 1200.0/19.0, + {{"C" ,-14},{"C#",-13},{"Db",-12},{"D",-11},{"D#",-10},{"Eb",-9},{"E",-8} + ,{"E#", -7},{"F" , -6},{"F#", -5},{"Gb",-4},{"G", -3},{"G#",-2} + ,{"Ab", -1},{"A" , 0},{"A#", 1},{"Bb", 2},{"B", 3},{"Cb", 4} + }}, + { "22 EDO", 22, 1200.0/22.0, + {{" C", -17},{"^C",-16},{"vC#",-15},{"vD",-14},{" D",-13},{"^D",-12} + ,{"^Eb",-11},{"vE",-10},{" E", -9},{" F", -8},{"^F", -7},{"vF#",-6} + ,{"vG", -5},{" G", -4},{"^G", -3},{"vG#",-2},{"vA", -1},{" A", 0} + ,{"^A", 1},{"^Bb", 2},{"vB", 3},{" B", 4} + }}, + { "24 EDO", 24, 1200.0/24.0, + {{"C", -18},{"C+",-17},{"C#",-16},{"Dd",-15},{"D",-14},{"D+",-13} + ,{"Eb",-12},{"Ed",-11},{"E", -10},{"E+", -9},{"F", -8},{"F+", -7} + ,{"F#", -6},{"Gd", -5},{"G", -4},{"G+", -3},{"G#",-2},{"Ad", -1} + ,{"A", 0},{"A+", 1},{"Bb", 2},{"Bd", 3},{"B", 4},{"Cd", 5} + }}, + { "31 EDO", 31, 1200.0/31.0, + {{"C",-23},{"C+",-22},{"C#",-21},{"Db",-20},{"Dd",-19} + ,{"D",-18},{"D+",-17},{"D#",-16},{"Eb",-15},{"Ed",-14} + ,{"E",-13},{"E+",-12} ,{"Fd",-11} + ,{"F",-10},{"F+", -9},{"F#", -8},{"Gb", -7},{"Gd", -6} + ,{"G", -5},{"G+", -4},{"G#", -3},{"Ab", -2},{"Ad", -1} + ,{"A", 0},{"A+", 1},{"A#", 2},{"Bb", 3},{"Bd", 4} + ,{"B", 5},{"B+", 6} ,{"Cd", 7} + }}, + { "31 EDO Zeta peak", 31, 1200.0/30.9783818789525220, + {{"C",-23},{"C+",-22},{"C#",-21},{"Db",-20},{"Dd",-19} + ,{"D",-18},{"D+",-17},{"D#",-16},{"Eb",-15},{"Ed",-14} + ,{"E",-13},{"E+",-12} ,{"Fd",-11} + ,{"F",-10},{"F+", -9},{"F#", -8},{"Gb", -7},{"Gd", -6} + ,{"G", -5},{"G+", -4},{"G#", -3},{"Ab", -2},{"Ad", -1} + ,{"A", 0},{"A+", 1},{"A#", 2},{"Bb", 3},{"Bd", 4} + ,{"B", 5},{"B+", 6} ,{"Cd", 7} + }}, + { "41 EDO", 41, 1200.0/41.0, + {{" C",-31},{"^C",-30},{" C+",-29},{" Db",-28},{" C#",-27},{" Dd",-26},{"vD",-24} + ,{" D",-24},{"^D",-23},{" D+",-22},{" Eb",-21},{" D#",-20},{" Ed",-19},{"vE",-18} + ,{" E",-17},{"^E",-16} ,{"vF",-15} + ,{" F",-14},{"^F",-13},{" F+",-12},{" Gb",-11},{" F#",-10},{" Gd", -9},{"vG", -8} + ,{" G", -7},{"^G", -6},{" G+", -5},{" Ab", -4},{" G#", -3},{" Ad", -2},{"vA", -1} + ,{" A", 0},{"^A", 1},{" A+", 2},{" Bb", 3},{" A#", 4},{" Bd", 5},{"vB", 6} + ,{" B", 7},{"^B", 8} ,{"vC", 9} + }}, + { "43 EDO", 43, 1200.0/43.0, + {{" C",-32},{"C+1",-31},{"C+2",-30},{"C+3",-29},{"C+4",-28},{"C+5",-27},{"C+6",-26} + ,{" D",-25},{"D+1",-24},{"D+2",-23},{"D+3",-22},{"D+4",-21},{"D+5",-20},{"D+6",-19} + ,{" E",-18},{"E+1",-17},{"E+2",-16} ,{"E+3",-15} + ,{" F",-14},{"F+1",-13},{"F+2",-12},{"F+3",-11},{"F+4",-10},{"F+5", -9},{"F+6", -8} + ,{" G", -7},{"G+1", -6},{"G+2", -5},{"G+3", -4},{"G+4", -3},{"G+5", -2},{"G+6", -1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6} + ,{" B", 7},{"B+1", 8},{"B+2", 9},{"B+3", 10}, {"B+4", 11} + }}, + { "46 EDO", 46, 1200.0/46.0, + {{" C",-35},{"C+1",-34},{"C+2",-33},{"C+3",-32},{"C+4",-31},{"C+5",-30},{"C+6",-29},{"C+7",-28} + ,{" D",-27},{"D+1",-26},{"D+2",-25},{"D+3",-24},{"D+4",-23},{"D+5",-22},{"D+6",-21},{"D+7",-20} + ,{" E",-19},{"E+1",-18},{"E+2",-17} + ,{" F",-16},{"F+1",-15},{"F+2",-14},{"F+3",-13},{"F+4",-12},{"F+5",-11},{"F+6",-10},{"F+7", -9} + ,{" G", -8},{"G+1", -7},{"G+2", -6},{"G+3", -5},{"G+4", -4},{"G+5", -3},{"G+6", -2},{"G+7", -1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6},{"A+7", 7} + ,{" B", 8},{"B+1", 9},{"B+2", 10} + }}, + { "53 EDO", 53, 1200.0/53.0, + {{" C", -40},{"^C", -39},{">C",-38},{"vDb",-37},{"Db",-36} + ,{" C#",-35},{"^C#",-34},{"<D",-33},{"vD", -32} + ,{" D", -31},{"^D", -30},{">D",-29},{"vEb",-28},{"Eb",-27} + ,{" D#",-26},{"^D#",-25},{"<E",-24},{"vE", -23} + ,{" E", -22},{"^E", -21},{">E",-20},{"vF", -19} + ,{" F", -18},{"^F", -17},{">F",-16},{"vGb",-15},{"Gb",-14} + ,{" F#",-13},{"^F#",-12},{"<G",-11},{"vG", -10} + ,{" G", -9},{"^G", -8},{">G", -7},{"vAb", -6},{"Ab", -5} + ,{" G#", -4},{"^G#", -3},{"<A", -2},{"vA", -1} + ,{" A", 0},{"^A", 1},{">A", 2},{"vBb", 3},{"Bb", 4} + ,{" A#", 5},{"^A#", 6},{"<B", 7},{"vB", 8} + ,{" B", 9},{"^B", 10},{"<C", 11},{"vC", 12} + }}, + { "58 EDO", 58, 1200.0/58.0, + {{" C",-44},{"C+1",-43},{"C+2",-42},{"C+3",-41},{"C+4",-40},{"C+5",-39},{"C+6",-38},{"C+7",-37},{"C+8",-36},{"C+8",-35} + ,{" D",-34},{"D+1",-33},{"D+2",-32},{"D+3",-31},{"D+4",-30},{"D+5",-29},{"D+6",-28},{"D+7",-27},{"D+8",-26},{"D+8",-25} + ,{" E",-24},{"E+1",-23},{"E+2",-22},{"E+3",-21} + ,{" F",-20},{"F+1",-19},{"F+2",-18},{"F+3",-17},{"F+4",-16},{"F+5",-15},{"F+6",-14},{"F+7",-13},{"F+8",-12},{"F+9",-11} + ,{" G",-10},{"G+1", -9},{"G+2", -8},{"G+3", -7},{"G+4", -6},{"G+5", -5},{"G+6", -4},{"G+7", -3},{"G+8", -2},{"G+9", -1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6},{"A+7", 7},{"A+8", 7},{"A+9", 7} + ,{" B", 10},{"B+1", 11},{"B+2", 12} + }}, + { "58 EDO Zeta peak", 58, 1200.0/58.066718758225889, + {{" C",-44},{"C+1",-43},{"C+2",-42},{"C+3",-41},{"C+4",-40},{"C+5",-39},{"C+6",-38},{"C+7",-37},{"C+8",-36},{"C+8",-35} + ,{" D",-34},{"D+1",-33},{"D+2",-32},{"D+3",-31},{"D+4",-30},{"D+5",-29},{"D+6",-28},{"D+7",-27},{"D+8",-26},{"D+8",-25} + ,{" E",-24},{"E+1",-23},{"E+2",-22},{"E+3",-21} + ,{" F",-20},{"F+1",-19},{"F+2",-18},{"F+3",-17},{"F+4",-16},{"F+5",-15},{"F+6",-14},{"F+7",-13},{"F+8",-12},{"F+9",-11} + ,{" G",-10},{"G+1", -9},{"G+2", -8},{"G+3", -7},{"G+4", -6},{"G+5", -5},{"G+6", -4},{"G+7", -3},{"G+8", -2},{"G+9", -1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6},{"A+7", 7},{"A+8", 7},{"A+9", 7} + ,{" B", 10},{"B+1", 11},{"B+2", 12} + }}, + { "72 EDO", 72, 1200.0/72.0, + {{" C", -54},{"^C", -53},{">C", -52},{" C+",-51},{"<C#",-50},{"vC#",-49} + ,{" C#",-48},{"^C#",-47},{">C#",-46},{" Dd",-45},{"<D" ,-44},{"vD" ,-43} + ,{" D", -42},{"^D", -41},{">D", -40},{" D+",-39},{"<Eb",-38},{"vEb",-37} + ,{" Eb",-36},{"^Eb",-35},{">Eb",-34},{" Ed",-33},{"<E" ,-32},{"vE" ,-31} + ,{" E", -30},{"^E", -29},{">E", -28},{" E+",-27},{"<F" ,-26},{"vF" ,-25} + ,{" F", -24},{"^F", -23},{">F", -22},{" F+",-21},{"<F#",-20},{"vF#",-19} + ,{" F#",-18},{"^F#",-17},{">F#",-16},{" Gd",-15},{"<G" ,-14},{"vG" ,-13} + ,{" G", -12},{"^G", -11},{">G", -10},{" G+", -9},{"<G#", -8},{"vG#", -7} + ,{" G#", -6},{"^G#", -5},{">G#", -4},{" Ad", -3},{"<A" , -2},{"vA" , -1} + ,{" A", 0},{"^A", 1},{">A", 2},{" A+", 3},{"<Bb", 4},{"vBb", 5} + ,{" Bb", 6},{"^Bb", 7},{">Bb", 8},{" Bd", 9},{"<B" , 10},{"vB" , 11} + ,{" B", 12},{"^B", 13},{">B", 14},{" Cd", 15},{"<C" , 16},{"vC" , 17} + }}, + { "72 EDO Zeta peak", 72, 1200.0/71.9506066608606432, + {{" C", -54},{"^C", -53},{">C", -52},{" C+",-51},{"<C#",-50},{"vC#",-49} + ,{" C#",-48},{"^C#",-47},{">C#",-46},{" Dd",-45},{"<D" ,-44},{"vD" ,-43} + ,{" D", -42},{"^D", -41},{">D", -40},{" D+",-39},{"<Eb",-38},{"vEb",-37} + ,{" Eb",-36},{"^Eb",-35},{">Eb",-34},{" Ed",-33},{"<E" ,-32},{"vE" ,-31} + ,{" E", -30},{"^E", -29},{">E", -28},{" E+",-27},{"<F" ,-26},{"vF" ,-25} + ,{" F", -24},{"^F", -23},{">F", -22},{" F+",-21},{"<F#",-20},{"vF#",-19} + ,{" F#",-18},{"^F#",-17},{">F#",-16},{" Gd",-15},{"<G" ,-14},{"vG" ,-13} + ,{" G", -12},{"^G", -11},{">G", -10},{" G+", -9},{"<G#", -8},{"vG#", -7} + ,{" G#", -6},{"^G#", -5},{">G#", -4},{" Ad", -3},{"<A" , -2},{"vA" , -1} + ,{" A", 0},{"^A", 1},{">A", 2},{" A+", 3},{"<Bb", 4},{"vBb", 5} + ,{" Bb", 6},{"^Bb", 7},{">Bb", 8},{" Bd", 9},{"<B" , 10},{"vB" , 11} + ,{" B", 12},{"^B", 13},{">B", 14},{" Cd", 15},{"<C" , 16},{"vC" , 17} + }}, + { "80 EDO", 80, 1200.0/80.0, + {{" C",-61},{"C+1",-60},{"C+2",-59},{"C+3",-58},{"C+4",-57},{"C+5",-56},{"C+6",-55},{"C+7",-54},{"C+8",-53},{"C+9",-52},{"C+10",-51},{"C+11",-50},{"C+12",-49},{"C+13",-48} + ,{" D",-47},{"D+1",-46},{"D+2",-45},{"D+3",-44},{"D+4",-43},{"D+5",-42},{"D+6",-41},{"D+7",-40},{"D+8",-39},{"D+9",-38},{"D+11",-37},{"D+12",-36},{"D+13",-35},{"D+14",-34} + ,{" E",-33},{"E+1",-32},{"E+2",-31},{"E+3",-30},{"E+4",-29} + ,{" F",-28},{"F+1",-27},{"F+2",-26},{"F+3",-25},{"F+4",-24},{"F+5",-23},{"F+6",-22},{"F+7",-21},{"F+8",-20},{"F+9",-19},{"F+11",-18},{"F+12",-17},{"F+13",-16},{"F+14",-15} + ,{" G",-14},{"G+1",-13},{"G+2",-12},{"G+3",-11},{"G+4",-10},{"G+5",-9},{"G+6",-8},{"G+7",-7},{"G+8",-6},{"G+9",-5},{"G+11",-4},{"G+12",-3},{"G+13",-2},{"G+14",-1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6},{"A+7", 7},{"A+8", 8},{"A+9", 9},{"A+10", 10},{"A+11", 11},{"A+12", 12},{"A+13", 13} + ,{" B", 14},{"B+1", 15},{"B+2", 16},{"B+3", 17},{"B+4", 18} + }}, + { "87 EDO", 87, 1200.0/87.0, + {{" C",-66},{"C+1",-65},{"C+2",-64},{"C+3",-63},{"C+4",-62},{"C+5",-61},{"C+6",-60},{"C+7",-59},{"C+8",-58},{"C+9",-57},{"C10",-57},{"C+11",-56},{"C+12",-55},{"C+13",-54},{"C+14",-53},{"C+15",-52} + ,{" D",-51},{"D+1",-50},{"D+2",-49},{"D+3",-48},{"D+4",-47},{"D+5",-46},{"D+6",-45},{"D+7",-44},{"D+8",-43},{"D+9",-42},{"D+10",-41},{"D+11",-40},{"D+12",-39},{"D+13",-38},{"D+14",-37} + ,{" E",-36},{"E+1",-35},{"E+2",-34},{"E+3",-33} + ,{" F",-30},{"F+1",-29},{"F+2",-28},{"F+3",-27},{"F+4",-26},{"F+5",-25},{"F+6",-24},{"F+7",-23},{"F+8",-22},{"F+9",-21},{"F+10",-20},{"F+11",-19},{"F+12",-18},{"F+13",-17},{"F+14",-16} + ,{" G",-15},{"G+1",-14},{"G+2",-13},{"G+3",-12},{"G+4",-11},{"G+5",-10},{"G+6",-9},{"G+7",-8},{"G+8",-7},{"G+9",-6},{"G+10",-5},{"G+11",-4},{"G+12",-3},{"G+13",-2},{"G+14",-1} + ,{" A", 0},{"A+1", 1},{"A+2", 2},{"A+3", 3},{"A+4", 4},{"A+5", 5},{"A+6", 6},{"A+7", 7},{"A+8", 8},{"A+9", 9},{"A+10", 10},{"A+11", 11},{"A+12", 12},{"A+13", 13},{"A+14", 14} + ,{" B", 15},{"B+1", 16},{"B+2", 17},{"B+3", 18} + }}, + { "Bohlen-Pierce", 13, (1200.0 * (log(3.0/1.0) / log(2.0)))/13.0, + {{"C",-10},{"Db",-9},{"D",-8},{"E",-7},{"F",-6},{"Gb",-5} + ,{"G",-4},{"H",-3},{"Jb",-2},{"J",-1},{"A",0},{"Bb",1},{"B",2} + }}, + { "Carlos Alpha", 9, 77.964990, + {{"I",0},{"I#",1},{"II-",2},{"II+",3},{"III",4} + ,{"III#",5},{"IV-",6},{"IV+",7},{"Ib",8} + }}, + { "Carlos Beta", 11, 63.832933, + {{"I",0},{"I#",1},{"IIb",2},{"II",3},{"II#",4},{"III",5} + ,{"III#",6},{"IVb",7},{"IV",8},{"IV#",9},{"Ib",10} + }}, + { "Carlos Gamma", 20, 35.0985422804, + {{" I", 0},{"^I", 1},{" IIb", 2},{"^IIb", 3},{" I#", 4},{"^I#", 5} + ,{" II", 6},{"^II", 7} + ,{" III",8},{"^III",9},{" IVb",10},{"^IVb",11},{" III#",12},{"^III#",13} + ,{" IV",14},{"^IV",15},{" Ib", 16},{"^Ib", 17},{" IV#", 18},{"^IV#", 19} + }}, + }; + +// @layout + /* + This section defines the different + preset note layout options. + */ + /* + This class provides the seed values + needed to implement a given isomorphic + note layout. From it, the map of buttons + to note frequencies can be calculated. + + A layout is tied to a specific tuning. + */ + class layoutDef { + public: + std::string name; // limit is 17 characters for GEM menu + bool isPortrait; // affects orientation of the GEM menu only. + byte hexMiddleC; // instead of "what note is button 1", "what button is the middle" + int8_t acrossSteps; // defined this way to be compatible with original v1.1 firmare + int8_t dnLeftSteps; // defined this way to be compatible with original v1.1 firmare + byte tuning; // index of the tuning that this layout is designed for + }; + /* + Isomorphic layouts are defined by + establishing where the center of the + layout is, and then the number of tuning + steps to go up or down for the hex button + across or down diagonally. + */ + + // NOTE: Aside from adding new layouts, + // I have also rearranged them for personal use: + // - Wicki-Hayden first, if it manages to map all notes; + // - Compressed Janko second, if it maps all notes; + // - Full Janko otherwise; + // You might want to arrange them as seems fit for release, + // including all other layouts as I didn't put them in any particular order + layoutDef layoutOptions[] = { + { "Wicki-Hayden", 1, 64, 2, -7, TUNING_12EDO }, + { "Harmonic Table", 0, 75, -7, 3, TUNING_12EDO }, + { "Janko", 0, 65, 1, -2, TUNING_12EDO }, + { "Bosanquet-Wilson", 0, 65, -1, -1, TUNING_12EDO }, + { "Compressed Janko", 0, 65, -1, -2, TUNING_12EDO }, + { "Compr. Bosanquet", 0, 65, -1, 3, TUNING_12EDO }, + { "Gerhard", 0, 65, -1, -3, TUNING_12EDO }, + { "Accordion C-sys.", 1, 75, 2, -3, TUNING_12EDO }, + { "Accordion B-sys.", 1, 64, 1, -3, TUNING_12EDO }, + { "Chromatic", 0, 75, 12, -1, TUNING_12EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_12EDO }, + { "31 EDO Janko", 0, 65, 2, -5, TUNING_12EDO }, // These layouts are meant for + { "31 EDO Compr.Janko",0, 65, -3, -5, TUNING_12EDO }, // synths that do not support MPE + { "31 EDO Bos.Wilson", 0, 65, -2, -3, TUNING_12EDO }, // but support scala/tun files + { "31 EDO Wicki-Hayd.",1, 64, 5, -18, TUNING_12EDO }, + { "31 EDO Harm. Table",0, 75, -18, 8, TUNING_12EDO }, // I did not add many, as it would get VERY cluttered + { "41 EDO Janko", 0, 65, 4, -7, TUNING_12EDO }, + { "53 EDO Janko", 0, 65, 5, -9, TUNING_12EDO }, // A different microtuning option in firmware + { "58 EDO Janko", 0, 65, 3, -10, TUNING_12EDO }, // should mitigate the need for these layouts + + { "Wicki-Hayden", 1, 64, 2, -7, TUNING_12EDO_ZETA }, + { "Harmonic Table", 0, 75, -7, 3, TUNING_12EDO_ZETA }, + { "Janko", 0, 65, 1, -2, TUNING_12EDO_ZETA }, + { "Bosanquet-Wilson", 0, 65, -1, -1, TUNING_12EDO_ZETA }, + { "Compressed Janko", 0, 65, -1, -2, TUNING_12EDO_ZETA }, + { "Compr. Bosanquet", 0, 65, -1, 3, TUNING_12EDO_ZETA }, + { "Gerhard", 0, 65, -1, -3, TUNING_12EDO_ZETA }, + { "Accordion C-sys.", 1, 75, 2, -3, TUNING_12EDO_ZETA }, + { "Accordion B-sys.", 1, 64, 1, -3, TUNING_12EDO_ZETA }, + { "Chromatic", 0, 75, 12, -1, TUNING_12EDO_ZETA }, + { "Full Gamut", 1, 75, 1, -9, TUNING_12EDO_ZETA }, + + { "Compressed Janko", 0, 65, -1, -3, TUNING_17EDO }, + { "Compr. Bosanquet", 0, 65, -2, -1, TUNING_17EDO }, + { "Janko", 0, 65, 2, -3, TUNING_17EDO }, + { "Bosanquet-Wilson", 0, 65, -2, -1, TUNING_17EDO }, + { "Neutral Thirds A", 0, 65, -1, -2, TUNING_17EDO }, + { "Neutral Thirds B", 0, 65, 1, -3, TUNING_17EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_17EDO }, + + { "Wicki-Hayden", 1, 65, 3, -11, TUNING_19EDO }, + { "Compressed Janko", 0, 65, -2, -3, TUNING_19EDO }, + { "Compr. Bosanquet", 0, 65, -2, 5, TUNING_19EDO }, + { "Janko", 0, 65, 1, -3, TUNING_19EDO }, + { "Bosanquet-Wilson", 0, 65, -1, -2, TUNING_19EDO }, + { "Harmonic Table", 0, 75, -11, 5, TUNING_19EDO }, + { "Kleismic", 0, 65, -1, -4, TUNING_19EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_19EDO }, + + { "Compressed Janko", 0, 65, -1, -4, TUNING_22EDO }, + { "Compr. Bosanquet", 0, 65, -1, 5, TUNING_22EDO }, + { "Janko", 0, 65, 3, -4, TUNING_22EDO }, + { "Bosanquet-Wilson", 0, 65, -3, -1, TUNING_22EDO }, + { "Wicki-Hayden", 1, 64, 4, -13, TUNING_22EDO }, + { "Porcupine", 0, 65, 1, -4, TUNING_22EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_22EDO }, + + { "Janko", 0, 65, 1, -4, TUNING_24EDO }, // Maybe call it "Quartertone Janko"? + { "Bosanquet-Wilson", 0, 65, -1, -3, TUNING_24EDO }, // Maybe call it "1/4 tone Bosanquet"? + { "Full Gamut", 1, 75, 1, -9, TUNING_24EDO }, + + { "Compressed Janko", 0, 65, -3, -5, TUNING_31EDO }, + { "Compr. Bosanquet", 0, 65, -3, 8, TUNING_31EDO }, + { "Janko", 0, 65, 2, -5, TUNING_31EDO }, + { "Bosanquet-Wilson", 0, 65, -2, -3, TUNING_31EDO }, + { "Wicki-Hayden", 1, 64, 5, -18, TUNING_31EDO }, + { "5X -13Y", 1, 64, 5, -13, TUNING_31EDO }, // Unnamed layout, between Wicki-Hayd. and compressed Janko + { "Harmonic Table", 0, 75, -18, 8, TUNING_31EDO }, + { "Double Bosanquet", 0, 65, -1, -4, TUNING_31EDO }, + { "Anti-Double Bos.", 0, 65, 1, -5, TUNING_31EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_31EDO }, + + { "Compressed Janko", 0, 65, -3, -5, TUNING_31EDO_ZETA }, + { "Compr. Bosanquet", 0, 65, -3, 8, TUNING_31EDO_ZETA }, + { "Janko", 0, 65, 2, -5, TUNING_31EDO_ZETA }, + { "Bosanquet-Wilson", 0, 65, -2, -3, TUNING_31EDO_ZETA }, + { "Wicki-Hayden", 1, 64, 5, -18, TUNING_31EDO_ZETA }, + { "5X -13Y", 1, 64, 5, -13, TUNING_31EDO_ZETA }, // Unnamed layout, between Wicki-Hayd. and compressed Janko + { "Harmonic Table", 0, 75, -18, 8, TUNING_31EDO_ZETA }, + { "Double Bosanquet", 0, 65, -1, -4, TUNING_31EDO_ZETA }, + { "Anti-Double Bos.", 0, 65, 1, -5, TUNING_31EDO_ZETA }, + { "Full Gamut", 1, 75, 1, -9, TUNING_31EDO_ZETA }, + + { "Compressed Janko", 0, 65, -3, -7, TUNING_41EDO }, + { "Compr. Bosanquet", 0, 65, -3, 10, TUNING_41EDO }, + { "Janko", 0, 65, 4, -7, TUNING_41EDO }, + { "Bosanquet-Wilson", 0, 65, -4, -3, TUNING_41EDO }, // forty-one #1 + { "Harmonic Table", 0, 75, -24, 11, TUNING_41EDO }, + { "Wicki-Hayden", 1, 64, 7, -24, TUNING_41EDO }, + { "Gerhard", 0, 65, 3, -10, TUNING_41EDO }, // forty-one #2 + { "Baldy", 0, 65, -1, -6, TUNING_41EDO }, + { "Rodan", 1, 65, -1, -7, TUNING_41EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_41EDO }, // forty-one #3 + + { "Janko", 0, 65, 3, -7, TUNING_43EDO }, + { "Bosanquet-Wilson", 0, 65, -3, -4, TUNING_43EDO }, + { "Wicki-Hayden", 1, 64, 7, -25, TUNING_43EDO }, + { "Harmonic Table", 0, 75, -25, 11, TUNING_43EDO }, + { "Full Gamut", 0, 75, 1, -9, TUNING_43EDO }, + + { "Janko", 0, 65, 5, -8, TUNING_46EDO }, + { "Bosanquet-Wilson", 0, 65, -5, -3, TUNING_46EDO }, + { "Harmonic Table", 0, 75, -27, 12, TUNING_46EDO }, + { "Echidnic", 0, 65, 5, -9, TUNING_46EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_46EDO }, + + { "Janko", 0, 65, 5, -9, TUNING_53EDO }, + { "Bosanquet-Wilson", 0, 65, -5, -4, TUNING_53EDO }, + { "Harmonic Table", 0, 75, -31, 14, TUNING_53EDO }, + { "Wicki-Hayden", 1, 64, 9, -31, TUNING_53EDO }, + { "Kleismic A", 0, 65, -8, -3, TUNING_53EDO }, + { "Kleismic B", 0, 65, -5, -3, TUNING_53EDO }, + { "Buzzard", 0, 65, -9, -1, TUNING_53EDO }, + { "Compressed Janko", 1, 65, 9, -13, TUNING_53EDO }, // Can only fit vertically + { "Compr. Bosanquet", 1, 65, 9, 4, TUNING_53EDO }, // Can only fit vertically + { "Full Gamut", 1, 75, 1, -9, TUNING_53EDO }, + + { "Janko", 0, 64, 3, -10, TUNING_58EDO }, // Maybe call it "Quartertone Janko"? + { "Bosanquet-Wilson", 0, 64, 3, 7, TUNING_58EDO }, // Maybe call it "Quartertone Bosanquet"? + { "Hemififths", 0, 64, 4, -7, TUNING_58EDO }, + { "Hemififths mirror.",0, 64, -4, -3, TUNING_58EDO }, + { "Chromatic", 0, 64, -7, -5, TUNING_58EDO }, + { "Harmonic Table", 0, 75, -34, 15, TUNING_58EDO }, + { "Septimal H.T.", 0, 75, -34, 13, TUNING_58EDO }, + { "Diaschismic", 0, 64, 4, -9, TUNING_58EDO }, + { "4X -19Y", 0, 64, 4, -19, TUNING_58EDO }, // unnamed layout, efficient for major 7ths, 9s, #11s and so on + { "-27X 10Y", 1, 64, -27, 10, TUNING_58EDO }, // weird but efficient layout + { "Wicki-Hayd.(29EDO)",1, 64, 10, -34, TUNING_58EDO }, + { "Bos.Wilson (29EDO)",0, 65, -6, -4, TUNING_58EDO }, + { "Janko (29EDO)",0, 65, 6, -10, TUNING_58EDO }, // 29 EDO subset, each for two rings of fifths + { "Tridec.H.T.(29EDO)",0, 75, -34, 14, TUNING_58EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_58EDO }, + + { "Janko", 0, 64, 3, -10, TUNING_58EDO_ZETA }, // Maybe call it "Quartertone Janko"? + { "Bosanquet-Wilson", 0, 64, 3, 7, TUNING_58EDO_ZETA }, // Maybe call it "1/4 tone Bosanquet"? + { "Hemififths", 0, 64, 4, -7, TUNING_58EDO_ZETA }, + { "Hemififths mirror.",0, 64, -4, -3, TUNING_58EDO_ZETA }, + { "Chromatic", 0, 64, -7, -5, TUNING_58EDO_ZETA }, + { "Harmonic Table", 0, 75, -34, 15, TUNING_58EDO_ZETA }, + { "Septimal H.T.", 0, 75, -34, 13, TUNING_58EDO_ZETA }, + { "Diaschismic", 0, 64, 4, -9, TUNING_58EDO_ZETA }, + { "4X -19Y", 0, 64, 4, -19, TUNING_58EDO_ZETA }, // unnamed layout, efficient for major 7ths, 9s, #11s and so on + { "-27X 10Y", 1, 64, -27, 10, TUNING_58EDO_ZETA }, // weird but efficient layout + { "Wicki-Hayd.(29EDO)",1, 64, 10, -34, TUNING_58EDO_ZETA }, + { "Bos.Wilson (29EDO)",0, 65, -6, -4, TUNING_58EDO_ZETA }, + { "Janko (29EDO)",0, 65, 6, -10, TUNING_58EDO_ZETA }, // 29 EDO subset, each for two rings of fifths + { "Tridec.H.T.(29EDO)",0, 75, -34, 14, TUNING_58EDO_ZETA }, + { "Full Gamut", 1, 75, 1, -9, TUNING_58EDO_ZETA }, + + { "Harmonic Table", 0, 75, -42, 19, TUNING_72EDO }, + { "-30X 19Y", 0, 75, -30, 19, TUNING_72EDO }, // unnamed layout. Like harmonic table but with fourths instead of fifths + { "Miracle mapping", 0, 65, -7, -2, TUNING_72EDO }, + { "Sept.H.T.(36EDO)", 0, 75, -42, 16, TUNING_72EDO }, // 36 EDO subset + { "Expanded Janko", 0, 65, -1, -6, TUNING_72EDO }, + { "Full Gamut", 1, 65, 1, -9, TUNING_72EDO }, + + { "Harmonic Table", 0, 75, -42, 19, TUNING_72EDO_ZETA }, + { "-30X 19Y", 0, 75, -30, 19, TUNING_72EDO_ZETA }, // unnamed layout. Like harmonic table but with fourths instead of fifths + { "Miracle mapping", 0, 65, -7, -2, TUNING_72EDO_ZETA }, + { "Sept.H.T.(36EDO)", 0, 75, -42, 16, TUNING_72EDO_ZETA }, // 36 EDO subset + { "Expanded Janko", 0, 65, -1, -6, TUNING_72EDO_ZETA }, + { "Full Gamut", 1, 65, 1, -9, TUNING_72EDO_ZETA }, + + { "Janko", 0, 65, 9, -14, TUNING_80EDO }, // Janko mapping is still too large to map all notes (same for 87 EDO) + { "Bosanquet-Wilson", 0, 65, -9, -5, TUNING_80EDO }, // Same for Bosanquet-Wilson. Still usable + { "Compressed Janko", 0, 65, -5, -14, TUNING_80EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_80EDO }, // So far this is the only one layout that maps every note + + { "Harmonic Table", 0, 75, -51, 23, TUNING_87EDO }, + { "Janko (good 3/2)", 0, 65, 5, -14, TUNING_87EDO }, + { "Bos.W.(good 3/2)", 0, 65, -5, -9, TUNING_87EDO }, + { "Wic.Hayd.nooctave", 1, 64, 14, -51, TUNING_87EDO }, // perfect thirds at the cost of losing an octave + { "Wic.Hayd. pyth.", 1, 64, 15, -51, TUNING_87EDO }, // pythagorean thirds, octave is preserved, note variety decreased + { "Janko (good 4/3)", 0, 65, 6, -14, TUNING_87EDO }, // Less efficient but allows perfect chord inversions + { "Bos.W.(good 4/3)", 0, 65, -6, -8, TUNING_87EDO }, + { "Bos.W.(26EDO)", 0, 65, -9, -6, TUNING_87EDO }, + { "Janko (26EDO)", 0, 65, 9, -15, TUNING_87EDO }, + { "Full Gamut", 1, 75, 1, -9, TUNING_87EDO }, + + { "Standard", 0, 65, -2, -1, TUNING_BP }, + { "Full Gamut", 1, 65, 1, -9, TUNING_BP }, + + { "Harmonic Table", 0, 75, -9, 5, TUNING_ALPHA }, + { "Compressed", 0, 65, -2, -1, TUNING_ALPHA }, + { "Full Gamut", 1, 65, 1, -9, TUNING_ALPHA }, + + { "Wicki-Hayden", 1, 65, 3, -11, TUNING_BETA }, // Carlos Beta has the same mappings as 19 EDO + { "Compressed Janko", 0, 65, -2, -3, TUNING_BETA }, + { "Compr. Bosanquet", 0, 65, -2, 5, TUNING_BETA }, + { "Janko", 0, 65, 1, -3, TUNING_BETA }, + { "Bosanquet-Wilson", 0, 65, -1, -2, TUNING_BETA }, + { "Harmonic Table", 0, 75, -11, 5, TUNING_BETA }, + { "Kleismic", 0, 65, -1, -4, TUNING_BETA }, + { "Full Gamut", 1, 75, 1, -9, TUNING_BETA }, + + { "Harmonic Table", 0, 75, -20, 9, TUNING_GAMMA }, // Same mappings as for 34 EDO + { "Compressed", 0, 65, -2, -1, TUNING_GAMMA }, // Difficult to map, has two rings of fifths + { "Full Gamut", 1, 65, 1, -9, TUNING_GAMMA } + }; + const byte layoutCount = sizeof(layoutOptions) / sizeof(layoutDef); +// @scales + /* + This class defines a scale pattern + for a given tuning. It is basically + an array with the number of steps in + between each degree of the scale. For + example, the major scale in 12EDO + is 2, 2, 1, 2, 2, 2, 1. + + A scale is tied to a specific tuning. + */ + class scaleDef { + public: + std::string name; + byte tuning; + byte pattern[MAX_SCALE_DIVISIONS]; + }; + scaleDef scaleOptions[] = { + { "None", ALL_TUNINGS, { 0 } }, + // 12 EDO + { "Major", TUNING_12EDO, { 2,2,1,2,2,2,1 } }, + { "Minor, natural", TUNING_12EDO, { 2,1,2,2,1,2,2 } }, + { "Minor, melodic", TUNING_12EDO, { 2,1,2,2,2,2,1 } }, + { "Minor, harmonic", TUNING_12EDO, { 2,1,2,2,1,3,1 } }, + { "Pentatonic, major", TUNING_12EDO, { 2,2,3,2,3 } }, + { "Pentatonic, minor", TUNING_12EDO, { 3,2,2,3,2 } }, + { "Blues", TUNING_12EDO, { 3,1,1,1,1,3,2 } }, + { "Double Harmonic", TUNING_12EDO, { 1,3,1,2,1,3,1 } }, + { "Phrygian", TUNING_12EDO, { 1,2,2,2,1,2,2 } }, + { "Phrygian Dominant", TUNING_12EDO, { 1,3,1,2,1,2,2 } }, + { "Dorian", TUNING_12EDO, { 2,1,2,2,2,1,2 } }, + { "Lydian", TUNING_12EDO, { 2,2,2,1,2,2,1 } }, + { "Lydian Dominant", TUNING_12EDO, { 2,2,2,1,2,1,2 } }, + { "Mixolydian", TUNING_12EDO, { 2,2,1,2,2,1,2 } }, + { "Locrian", TUNING_12EDO, { 1,2,2,1,2,2,2 } }, + { "Whole tone", TUNING_12EDO, { 2,2,2,2,2,2 } }, + { "Octatonic", TUNING_12EDO, { 2,1,2,1,2,1,2,1 } }, + // 17 EDO; for more: https://en.xen.wiki/w/17edo#Scales + { "Diatonic", TUNING_17EDO, { 3,3,1,3,3,3,1 } }, + { "Pentatonic", TUNING_17EDO, { 3,3,4,3,4 } }, + { "Harmonic", TUNING_17EDO, { 3,2,3,2,2,2,3 } }, + { "Husayni maqam", TUNING_17EDO, { 2,2,3,3,2,1,1,3 } }, + { "Blues", TUNING_17EDO, { 4,3,1,1,1,4,3 } }, + { "Hydra", TUNING_17EDO, { 3,3,1,1,2,3,2,1,1 } }, + // 19 EDO; for more: https://en.xen.wiki/w/19edo#Scales + { "Diatonic", TUNING_19EDO, { 3,3,2,3,3,3,2 } }, + { "Pentatonic", TUNING_19EDO, { 3,3,5,3,5 } }, + { "Semaphore", TUNING_19EDO, { 3,1,3,1,3,3,1,3,1 } }, + { "Negri", TUNING_19EDO, { 2,2,2,2,2,1,2,2,2,2 } }, + { "Sensi", TUNING_19EDO, { 2,2,1,2,2,2,1,2,2,2,1 } }, + { "Kleismic", TUNING_19EDO, { 1,3,1,1,3,1,1,3,1,3,1 } }, + { "Magic", TUNING_19EDO, { 3,1,1,1,3,1,1,1,3,1,1,1,1 } }, + { "Kind of blues", TUNING_19EDO, { 4,4,1,2,4,4 } }, + // 22 EDO; for more: https://en.xen.wiki/w/22edo_modes + { "Diatonic", TUNING_22EDO, { 4,4,1,4,4,4,1 } }, + { "Pentatonic", TUNING_22EDO, { 4,4,5,4,5 } }, + { "Orwell", TUNING_22EDO, { 3,2,3,2,3,2,3,2,2 } }, + { "Porcupine", TUNING_22EDO, { 4,3,3,3,3,3,3 } }, + { "Pajara", TUNING_22EDO, { 2,2,3,2,2,2,3,2,2,2 } }, + // 24 EDO; for more: https://en.xen.wiki/w/24edo_scales + { "Diatonic 12", TUNING_24EDO, { 4,4,2,4,4,4,2 } }, + { "Diatonic Soft", TUNING_24EDO, { 3,5,2,3,5,4,2 } }, + { "Diatonic Neutral", TUNING_24EDO, { 4,3,3,4,3,4,3 } }, + { "Pentatonic (12)", TUNING_24EDO, { 4,4,6,4,6 } }, + { "Pentatonic (Haba)", TUNING_24EDO, { 5,5,5,5,4 } }, + { "Invert Pentatonic", TUNING_24EDO, { 6,3,6,6,3 } }, + { "Rast maqam", TUNING_24EDO, { 4,3,3,4,4,2,1,3 } }, + { "Bayati maqam", TUNING_24EDO, { 3,3,4,4,2,1,3,4 } }, + { "Hijaz maqam", TUNING_24EDO, { 2,6,2,4,2,1,3,4 } }, + { "8-EDO", TUNING_24EDO, { 3,3,3,3,3,3,3,3 } }, + { "Wyschnegradsky", TUNING_24EDO, { 2,2,2,2,2,1,2,2,2,2,2,2,1 } }, + // 31 EDO; for more: https://en.xen.wiki/w/31edo#Scales + { "Diatonic", TUNING_31EDO, { 5,5,3,5,5,5,3 } }, + { "Pentatonic", TUNING_31EDO, { 5,5,8,5,8 } }, + { "Harmonic", TUNING_31EDO, { 5,5,4,4,4,3,3,3 } }, + { "Mavila", TUNING_31EDO, { 5,3,3,3,5,3,3,3,3 } }, + { "Quartal", TUNING_31EDO, { 2,2,7,2,2,7,2,7 } }, + { "Orwell", TUNING_31EDO, { 4,3,4,3,4,3,4,3,3 } }, + { "Neutral", TUNING_31EDO, { 4,4,4,4,4,4,4,3 } }, + { "Miracle", TUNING_31EDO, { 4,3,3,3,3,3,3,3,3,3 } }, + // 31 EDO ZETA PEAK; + { "Diatonic", TUNING_31EDO_ZETA, { 5,5,3,5,5,5,3 } }, + { "Pentatonic", TUNING_31EDO_ZETA, { 5,5,8,5,8 } }, + { "Harmonic", TUNING_31EDO_ZETA, { 5,5,4,4,4,3,3,3 } }, + { "Mavila", TUNING_31EDO_ZETA, { 5,3,3,3,5,3,3,3,3 } }, + { "Quartal", TUNING_31EDO_ZETA, { 2,2,7,2,2,7,2,7 } }, + { "Orwell", TUNING_31EDO_ZETA, { 4,3,4,3,4,3,4,3,3 } }, + { "Neutral", TUNING_31EDO_ZETA, { 4,4,4,4,4,4,4,3 } }, + { "Miracle", TUNING_31EDO_ZETA, { 4,3,3,3,3,3,3,3,3,3 } }, + // 41 EDO; for more: https://en.xen.wiki/w/41edo#Scales_and_modes + { "Diatonic", TUNING_41EDO, { 7,7,3,7,7,7,3 } }, + { "Pentatonic", TUNING_41EDO, { 7,7,10,7,10 } }, + { "Pure major", TUNING_41EDO, { 7,6,4,7,6,7,4 } }, + { "5-limit chromatic", TUNING_41EDO, { 4,3,4,2,4,3,4,4,2,4,3,4 } }, + { "7-limit chromatic", TUNING_41EDO, { 3,4,2,4,4,3,4,2,4,3,3,4 } }, + { "Harmonic", TUNING_41EDO, { 5,4,4,4,4,3,3,3,3,3,2,3 } }, + { "Middle East-ish", TUNING_41EDO, { 7,5,7,5,5,7,5 } }, + { "Thai", TUNING_41EDO, { 6,6,6,6,6,6,5 } }, + { "Slendro", TUNING_41EDO, { 8,8,8,8,9 } }, + { "Pelog / Mavila", TUNING_41EDO, { 8,5,5,8,5,5,5 } }, + // 53 EDO + { "Diatonic", TUNING_53EDO, { 9,9,4,9,9,9,4 } }, + { "Pentatonic", TUNING_53EDO, { 9,9,13,9,13 } }, + { "Rast makam", TUNING_53EDO, { 9,8,5,9,9,4,4,5 } }, + { "Usshak makam", TUNING_53EDO, { 7,6,9,9,4,4,5,9 } }, + { "Hicaz makam", TUNING_53EDO, { 5,12,5,9,4,9,9 } }, + { "Orwell", TUNING_53EDO, { 7,5,7,5,7,5,7,5,5 } }, + { "Sephiroth", TUNING_53EDO, { 6,5,5,6,5,5,6,5,5,5 } }, + { "Smitonic", TUNING_53EDO, { 11,11,3,11,3,11,3 } }, + { "Slendric", TUNING_53EDO, { 7,3,7,3,7,3,7,3,7,3,3 } }, + { "Semiquartal", TUNING_53EDO, { 9,2,9,2,9,2,9,2,9 } }, + // 72 EDO + { "Diatonic", TUNING_72EDO, { 12,12,6,12,12,12,6 } }, + { "Pentatonic", TUNING_72EDO, { 12,12,18,12,18 } }, + { "Ben Johnston", TUNING_72EDO, { 6,6,6,5,5,5,9,8,4,4,7,7 } }, + { "18-EDO", TUNING_72EDO, { 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 } }, + { "Miracle", TUNING_72EDO, { 5,2,5,2,5,2,2,5,2,5,2,5,2,5,2,5,2,5,2,5,2 } }, + { "Marvolo", TUNING_72EDO, { 5,5,5,5,5,5,5,2,5,5,5,5,5,5 } }, + { "Catakleismic", TUNING_72EDO, { 4,7,4,4,4,7,4,4,4,7,4,4,4,7,4 } }, + { "Palace", TUNING_72EDO, { 10,9,11,12,10,9,11 } }, + // BP + { "Lambda", TUNING_BP, { 2,1,2,1,2,1,2,1,1 } }, + // Alpha + { "Super Meta Lydian", TUNING_ALPHA, { 3,2,2,2 } }, + // Beta + { "Super Meta Lydian", TUNING_BETA, { 3,3,3,2 } }, + // Gamma + { "Super Meta Lydian", TUNING_GAMMA, { 6,5,5,4 } } + }; + const byte scaleCount = sizeof(scaleOptions) / sizeof(scaleDef); + +// @palettes + /* + This section defines the code needed + to determine colors for each hex. + */ + /* + LED colors are defined in the code + on a perceptual basis. Instead of + calculating RGB codes, the program + uses an artist's color wheel approach. + + For value / brightness, two sets of + named constants are defined. The BRIGHT_ + series (see the defaults section above) + corresponds to the overall + level of lights from the HexBoard, from + dim to maximum. The VALUE_ series + is used to differentiate light and dark + colors in a palette. The BRIGHT and VALUE + are multiplied together (and normalized) + to get the output brightness. + */ + #define VALUE_BLACK 0 + #define VALUE_LOW 80 + #define VALUE_SHADE 164 + #define VALUE_NORMAL 180 + #define VALUE_FULL 255 + /* + Saturation is zero for black and white, and 255 + for fully chromatic color. Value is the + brightness level of the LED, from 0 = off + to 255 = max. + */ + #define SAT_BW 0 + #define SAT_TINT 32 + #define SAT_DULL 85 + #define SAT_MODERATE 120 + #define SAT_VIVID 255 + /* + Hues are angles from 0 to 360, starting + at red and towards yellow->green->blue + when the hue angle increases. + */ + #define HUE_NONE 0.0 + #define HUE_RED 0.0 + #define HUE_ORANGE 36.0 + #define HUE_YELLOW 72.0 + #define HUE_LIME 108.0 + #define HUE_GREEN 144.0 + #define HUE_CYAN 180.0 + #define HUE_BLUE 216.0 + #define HUE_INDIGO 252.0 + #define HUE_PURPLE 288.0 + #define HUE_MAGENTA 324.0 + /* + This class is a basic hue, saturation, + and value triplet, with some limited + transformation functions. Rather than + load a full color space library, this + program uses non-class procedures to + perform conversions to and from LED- + friendly color codes. + */ + class colorDef { + public: + float hue; + byte sat; + byte val; + colorDef tint() { + colorDef temp; + temp.hue = this->hue; + temp.sat = ((this->sat > SAT_MODERATE) ? SAT_MODERATE : this->sat); + temp.val = VALUE_FULL; + return temp; + } + colorDef shade() { + colorDef temp; + temp.hue = this->hue; + temp.sat = ((this->sat > SAT_MODERATE) ? SAT_MODERATE : this->sat); + temp.val = VALUE_LOW; + return temp; + } + }; + /* + This class defines a palette, which is + a map of musical scale degrees to + colors. A palette is tied to a specific + tuning but not to a specific layout. + */ + class paletteDef { + public: + colorDef swatch[MAX_SCALE_DIVISIONS]; // the different colors used in this palette + byte colorNum[MAX_SCALE_DIVISIONS]; // map key (c,d...) to swatches + colorDef getColor(byte givenStepFromC) { + return swatch[colorNum[givenStepFromC] - 1]; + } + float getHue(byte givenStepFromC) { + return getColor(givenStepFromC).hue; + } + byte getSat(byte givenStepFromC) { + return getColor(givenStepFromC).sat; + } + byte getVal(byte givenStepFromC) { + return getColor(givenStepFromC).val; + } + }; + /* + Palettes are defined by creating + a set of colors, and then making + an array of numbers that map the + intervals of that tuning to the + chosen colors. It's like paint + by numbers! Note that the indexes + start with 1, because the arrays are + padded with 0 for entries after + those intialized. + */ + paletteDef palette[] = { + // 12 EDO + {{{HUE_NONE, SAT_BW, 64} + , {200, 60, VALUE_SHADE } + , {HUE_BLUE, SAT_VIVID, VALUE_SHADE} + , {230, 240, VALUE_NORMAL} + , {HUE_PURPLE, SAT_VIVID, VALUE_NORMAL} + , {270, SAT_VIVID, VALUE_NORMAL} + },{6,1,2,1,2,2,1,4,1,2,1,2}}, + // 17 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} + , {HUE_INDIGO, SAT_VIVID, VALUE_NORMAL} + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} + },{1,2,3,1,2,3,1,1,2,3,1,2,3,1,2,3,1}}, + // 19 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // # + , {HUE_BLUE, SAT_VIVID, VALUE_NORMAL} // b + , {HUE_MAGENTA, SAT_VIVID, VALUE_NORMAL} // enh + },{1,2,3,1,2,3,1,4,1,2,3,1,2,3,1,2,3,1,4}}, + // 22 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_BLUE, SAT_VIVID, VALUE_NORMAL} // ^ + , {HUE_MAGENTA, SAT_VIVID, VALUE_NORMAL} // mid + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // v + },{1,2,3,4,1,2,3,4,1,1,2,3,4,1,2,3,4,1,2,3,4,1}}, + // 24 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_LIME, SAT_DULL, VALUE_SHADE } // + + , {HUE_CYAN, SAT_VIVID, VALUE_NORMAL} // #/b + , {HUE_INDIGO, SAT_DULL, VALUE_SHADE } // d + , {HUE_CYAN, SAT_DULL, VALUE_SHADE } // enh + },{1,2,3,4,1,2,3,4,1,5,1,2,3,4,1,2,3,4,1,2,3,4,1,5}}, + // 31 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_RED, SAT_DULL, VALUE_NORMAL} // + + , {HUE_YELLOW, SAT_DULL, VALUE_SHADE } // # + , {HUE_CYAN, SAT_DULL, VALUE_SHADE } // b + , {HUE_INDIGO, SAT_DULL, VALUE_NORMAL} // d + , {HUE_RED, SAT_DULL, VALUE_SHADE } // enh E+ Fb + , {HUE_INDIGO, SAT_DULL, VALUE_SHADE } // enh E# Fd + },{1,2,3,4,5,1,2,3,4,5,1,6,7,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,6,7}}, + // 41 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_RED, SAT_DULL, VALUE_NORMAL} // ^ + , {HUE_BLUE, SAT_VIVID, VALUE_NORMAL} // + + , {HUE_CYAN, SAT_DULL, VALUE_SHADE } // b + , {HUE_GREEN, SAT_DULL, VALUE_SHADE } // # + , {HUE_MAGENTA, SAT_DULL, VALUE_NORMAL} // d + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // v + },{1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,1,2,3,4,5,6,7, + 1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,6,7}}, + // 43 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_RED, SAT_DULL, VALUE_NORMAL} // ^ + , {HUE_BLUE, SAT_VIVID, VALUE_NORMAL} // + + , {HUE_CYAN, SAT_DULL, VALUE_SHADE } // b + , {HUE_GREEN, SAT_DULL, VALUE_SHADE } // # + , {HUE_MAGENTA, SAT_DULL, VALUE_NORMAL} // d + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // v + },{1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,1,2,3,4,5,6,7, + 1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,6,7}}, + // 53 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_ORANGE, SAT_VIVID, VALUE_NORMAL} // ^ + , {HUE_MAGENTA, SAT_DULL, VALUE_NORMAL} // L + , {HUE_INDIGO, SAT_VIVID, VALUE_NORMAL} // bv + , {HUE_GREEN, SAT_VIVID, VALUE_SHADE } // b + , {HUE_YELLOW, SAT_VIVID, VALUE_SHADE } // # + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} // #^ + , {HUE_PURPLE, SAT_DULL, VALUE_NORMAL} // 7 + , {HUE_CYAN, SAT_VIVID, VALUE_SHADE } // v + },{1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,9,1,2,3,4,5,6,7,8,9, + 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,9}}, + // 72 EDO + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_GREEN, SAT_DULL, VALUE_SHADE } // ^ + , {HUE_RED, SAT_DULL, VALUE_SHADE } // L + , {HUE_PURPLE, SAT_DULL, VALUE_SHADE } // +/d + , {HUE_BLUE, SAT_DULL, VALUE_SHADE } // 7 + , {HUE_YELLOW, SAT_DULL, VALUE_SHADE } // v + , {HUE_INDIGO, SAT_VIVID, VALUE_SHADE } // #/b + },{1,2,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6, + 7,2,3,4,5,6,1,2,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,6}}, + // BOHLEN PIERCE + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} + , {HUE_INDIGO, SAT_VIVID, VALUE_NORMAL} + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} + },{1,2,3,1,2,3,1,1,2,3,1,2,3}}, + // ALPHA + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // # + , {HUE_INDIGO, SAT_VIVID, VALUE_NORMAL} // d + , {HUE_LIME, SAT_VIVID, VALUE_NORMAL} // + + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} // enharmonic + , {HUE_CYAN, SAT_VIVID, VALUE_NORMAL} // b + },{1,2,3,4,1,2,3,5,6}}, + // BETA + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_INDIGO, SAT_VIVID, VALUE_NORMAL} // # + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} // b + , {HUE_MAGENTA, SAT_DULL, VALUE_NORMAL} // enharmonic + },{1,2,3,1,4,1,2,3,1,2,3}}, + // GAMMA + {{{HUE_NONE, SAT_BW, VALUE_NORMAL} // n + , {HUE_RED, SAT_VIVID, VALUE_NORMAL} // b + , {HUE_BLUE, SAT_VIVID, VALUE_NORMAL} // # + , {HUE_YELLOW, SAT_VIVID, VALUE_NORMAL} // n^ + , {HUE_PURPLE, SAT_VIVID, VALUE_NORMAL} // b^ + , {HUE_GREEN, SAT_VIVID, VALUE_NORMAL} // #^ + }, {1,4,2,5,3,6,1,4,1,4,2,5,3,6,1,4,2,5,3,6}}, + }; + +// @presets + /* + This section of the code defines + a "preset" as a collection of + parameters that control how the + hexboard is operating and playing. + + In the long run this will serve as + a foundation for saving and loading + preferences / settings through the + file system. + */ + + class presetDef { + public: + std::string presetName; + int tuningIndex; // instead of using pointers, i chose to store index value of each option, to be saved to a .pref or .ini or something + int layoutIndex; + int scaleIndex; + int keyStepsFromA; // what key the scale is in, where zero equals A. + int transpose; + // define simple recall functions + tuningDef tuning() { + return tuningOptions[tuningIndex]; + } + layoutDef layout() { + return layoutOptions[layoutIndex]; + } + scaleDef scale() { + return scaleOptions[scaleIndex]; + } + int layoutsBegin() { + if (tuningIndex == TUNING_12EDO) { + return 0; + } else { + int temp = 0; + while (layoutOptions[temp].tuning < tuningIndex) { + temp++; + } + return temp; + } + } + int keyStepsFromC() { + return tuning().spanCtoA() - keyStepsFromA; + } + int pitchRelToA4(int givenStepsFromC) { + return givenStepsFromC + tuning().spanCtoA() + transpose; + } + int keyDegree(int givenStepsFromC) { + return positiveMod(givenStepsFromC + keyStepsFromC(), tuning().cycleLength); + } + }; + + presetDef current = { + "Default", // name + TUNING_12EDO, // tuning + 0, // default to the first layout, wicki hayden + 0, // default to using no scale (chromatic) + -9, // default to the key of C, which in 12EDO is -9 steps from A. + 0 // default to no transposition + }; + +// @diagnostics + /* + This section of the code handles + optional sending of log messages + to the Serial port + */ + #define DIAGNOSTICS_ON true + void sendToLog(std::string msg) { + if (DIAGNOSTICS_ON) { + Serial.println(msg.c_str()); + } + } + +// @timing + /* + This section of the code handles basic + timekeeping stuff + */ + #include "hardware/timer.h" // library of code to access the processor's clock functions + uint64_t runTime = 0; // Program loop consistent variable for time in microseconds since power on + uint64_t lapTime = 0; // Used to keep track of how long each loop takes. Useful for rate-limiting. + uint64_t loopTime = 0; // Used to check speed of the loop + uint64_t readClock() { + uint64_t temp = timer_hw->timerawh; + return (temp << 32) | timer_hw->timerawl; + } + void timeTracker() { + lapTime = runTime - loopTime; + loopTime = runTime; // Update previousTime variable to give us a reference point for next loop + runTime = readClock(); // Store the current time in a uniform variable for this program loop + } + +// @fileSystem + /* + This section of the code handles the + file system. There isn't much being + done with it yet, per se. + If so, this section might be relocated + */ + #include "LittleFS.h" // code to use flash drive space as a file system -- not implemented yet, as of May 2024 + void setupFileSystem() { + Serial.begin(115200); // Set serial to make uploads work without bootsel button + LittleFSConfig cfg; // Configure file system defaults + cfg.setAutoFormat(true); // Formats file system if it cannot be mounted. + LittleFS.setConfig(cfg); + LittleFS.begin(); // Mounts file system. + if (!LittleFS.begin()) { + sendToLog("An Error has occurred while mounting LittleFS"); + } else { + sendToLog("LittleFS mounted OK"); + } + } + +// @gridSystem + /* + This section of the code handles the hex grid + Hexagonal coordinates + https://www.redblobgames.com/grids/hexagons/ + http://ondras.github.io/rot.js/manual/#hex/indexing + The HexBoard contains a grid of 140 buttons with + hexagonal keycaps. The processor has 10 pins connected + to a multiplexing unit, which hotswaps between the 14 rows + of ten buttons to allow all 140 inputs to be read in one + program read cycle. + */ + #define MPLEX_1_PIN 4 + #define MPLEX_2_PIN 5 + #define MPLEX_4_PIN 2 + #define MPLEX_8_PIN 3 + #define COLUMN_PIN_0 6 + #define COLUMN_PIN_1 7 + #define COLUMN_PIN_2 8 + #define COLUMN_PIN_3 9 + #define COLUMN_PIN_4 10 + #define COLUMN_PIN_5 11 + #define COLUMN_PIN_6 12 + #define COLUMN_PIN_7 13 + #define COLUMN_PIN_8 14 + #define COLUMN_PIN_9 15 + /* + There are 140 LED pixels on the Hexboard. + LED instructions all go through the LED_PIN. + It so happens that each LED pixel corresponds + to one and only one hex button, so both a LED + and its button can have the same index from 0-139. + Since these parameters are pre-defined by the + hardware build, the dimensions of the grid + are therefore constants. + */ + #define LED_COUNT 140 + #define COLCOUNT 10 + #define ROWCOUNT 16 + #define BTN_COUNT COLCOUNT*ROWCOUNT + /* + Of the 140 buttons, 7 are offset to the bottom left + quadrant of the Hexboard and are reserved as command + buttons. Their LED reference is pre-defined here. + If you want those seven buttons remapped to play + notes, you may wish to change or remove these + variables and alter the value of CMDCOUNT to agree + with how many buttons you reserve for non-note use. + */ + #define CMDBTN_0 0 + #define CMDBTN_1 20 + #define CMDBTN_2 40 + #define CMDBTN_3 60 + #define CMDBTN_4 80 + #define CMDBTN_5 100 + #define CMDBTN_6 120 + #define CMDCOUNT 7 + /* + This class defines the hexagon button + as an object. It stores all real-time + properties of the button -- its coordinates, + its current pressed state, the color + codes to display based on what action is + taken, what note and frequency is assigned, + whether the button is a command or not, + whether the note is in the selected scale, + whether the button is flagged to be animated, + and whether the note is currently + sounding on MIDI / the synth. + + Needless to say, this is an important class. + */ + class buttonDef { + public: + #define BTN_STATE_OFF 0 + #define BTN_STATE_NEWPRESS 1 + #define BTN_STATE_RELEASED 2 + #define BTN_STATE_HELD 3 + byte btnState = 0; // binary 00 = off, 01 = just pressed, 10 = just released, 11 = held + void interpBtnPress(bool isPress) { + btnState = (((btnState << 1) + isPress) & 3); + } + int8_t coordRow = 0; // hex coordinates + int8_t coordCol = 0; // hex coordinates + uint64_t timePressed = 0; // timecode of last press + uint32_t LEDcodeAnim = 0; // calculate it once and store value, to make LED playback snappier + uint32_t LEDcodePlay = 0; // calculate it once and store value, to make LED playback snappier + uint32_t LEDcodeRest = 0; // calculate it once and store value, to make LED playback snappier + uint32_t LEDcodeOff = 0; // calculate it once and store value, to make LED playback snappier + uint32_t LEDcodeDim = 0; // calculate it once and store value, to make LED playback snappier + bool animate = 0; // hex is flagged as part of the animation in this frame, helps make animations smoother + int16_t stepsFromC = 0; // number of steps from C4 (semitones in 12EDO; microtones if >12EDO) + bool isCmd = 0; // 0 if it's a MIDI note; 1 if it's a MIDI control cmd + bool inScale = 0; // 0 if it's not in the selected scale; 1 if it is + byte note = UNUSED_NOTE; // MIDI note or control parameter corresponding to this hex + int16_t bend = 0; // in microtonal mode, the pitch bend for this note needed to be tuned correctly + byte MIDIch = 0; // what MIDI channel this note is playing on + byte synthCh = 0; // what synth polyphony ch this is playing on + float frequency = 0.0; // what frequency to ring on the synther + }; + /* + This class is like a virtual wheel. + It takes references / pointers to + the state of three command buttons, + translates presses of those buttons + into wheel turns, and converts + these movements into corresponding + values within a range. + + This lets us generalize the + behavior of a virtual pitch bend + wheel or mod wheel using the same + code, only needing to modify the + range of output and the connected + buttons to operate it. + */ + class wheelDef { + public: + byte* alternateMode; // two ways to control + byte* isSticky; // TRUE if you leave value unchanged when no buttons pressed + byte* topBtn; // pointer to the key Status of the button you use as this button + byte* midBtn; + byte* botBtn; + int16_t minValue; + int16_t maxValue; + int* stepValue; // this can be changed via GEM menu + int16_t defValue; // snapback value + int16_t curValue; + int16_t targetValue; + uint64_t timeLastChanged; + void setTargetValue() { + if (*alternateMode) { + if (*midBtn >> 1) { // middle button toggles target (0) vs. step (1) mode + int16_t temp = curValue; + if (*topBtn == 1) {temp += *stepValue;} // tap button + if (*botBtn == 1) {temp -= *stepValue;} // tap button + if (temp > maxValue) {temp = maxValue;} + else if (temp <= minValue) {temp = minValue;} + targetValue = temp; + } else { + switch (((*topBtn >> 1) << 1) + (*botBtn >> 1)) { + case 0b10: targetValue = maxValue; break; + case 0b11: targetValue = defValue; break; + case 0b01: targetValue = minValue; break; + default: targetValue = curValue; break; + } + } + } else { + switch (((*topBtn >> 1) << 2) + ((*midBtn >> 1) << 1) + (*botBtn >> 1)) { + case 0b100: targetValue = maxValue; break; + case 0b110: targetValue = (3 * maxValue + minValue) / 4; break; + case 0b010: + case 0b111: + case 0b101: targetValue = (maxValue + minValue) / 2; break; + case 0b011: targetValue = (maxValue + 3 * minValue) / 4; break; + case 0b001: targetValue = minValue; break; + case 0b000: targetValue = (*isSticky ? curValue : defValue); break; + default: break; + } + } + } + bool updateValue(uint64_t givenTime) { + int16_t temp = targetValue - curValue; + if (temp != 0) { + if ((givenTime - timeLastChanged) >= CC_MSG_COOLDOWN_MICROSECONDS ) { + timeLastChanged = givenTime; + if (abs(temp) < *stepValue) { + curValue = targetValue; + } else { + curValue = curValue + (*stepValue * (temp / abs(temp))); + } + return 1; + } else { + return 0; + } + } else { + return 0; + } + } + }; + const byte mPin[] = { + MPLEX_1_PIN, MPLEX_2_PIN, MPLEX_4_PIN, MPLEX_8_PIN + }; + const byte cPin[] = { + COLUMN_PIN_0, COLUMN_PIN_1, COLUMN_PIN_2, COLUMN_PIN_3, + COLUMN_PIN_4, COLUMN_PIN_5, COLUMN_PIN_6, + COLUMN_PIN_7, COLUMN_PIN_8, COLUMN_PIN_9 + }; + const byte assignCmd[] = { + CMDBTN_0, CMDBTN_1, CMDBTN_2, CMDBTN_3, + CMDBTN_4, CMDBTN_5, CMDBTN_6 + }; + + /* + define h, which is a collection of all the + buttons from 0 to 139. h[i] refers to the + button with the LED address = i. + */ + buttonDef h[BTN_COUNT]; + + wheelDef modWheel = { &wheelMode, &modSticky, + &h[assignCmd[4]].btnState, &h[assignCmd[5]].btnState, &h[assignCmd[6]].btnState, + 0, 127, &modWheelSpeed, 0, 0, 0, 0 + }; + wheelDef pbWheel = { &wheelMode, &pbSticky, + &h[assignCmd[4]].btnState, &h[assignCmd[5]].btnState, &h[assignCmd[6]].btnState, + -8192, 8191, &pbWheelSpeed, 0, 0, 0, 0 + }; + wheelDef velWheel = { &wheelMode, &velSticky, + &h[assignCmd[0]].btnState, &h[assignCmd[1]].btnState, &h[assignCmd[2]].btnState, + 0, 127, &velWheelSpeed, 96, 96, 96, 0 + }; + + bool toggleWheel = 0; // 0 for mod, 1 for pb + + void setupPins() { + for (byte p = 0; p < sizeof(cPin); p++) { // For each column pin... + pinMode(cPin[p], INPUT_PULLUP); // set the pinMode to INPUT_PULLUP (+3.3V / HIGH). + } + for (byte p = 0; p < sizeof(mPin); p++) { // For each column pin... + pinMode(mPin[p], OUTPUT); // Setting the row multiplexer pins to output. + } + sendToLog("Pins mounted"); + } + + void setupGrid() { + for (byte i = 0; i < BTN_COUNT; i++) { + h[i].coordRow = (i / 10); + h[i].coordCol = (2 * (i % 10)) + (h[i].coordRow & 1); + h[i].isCmd = 0; + h[i].note = UNUSED_NOTE; + h[i].btnState = 0; + } + for (byte c = 0; c < CMDCOUNT; c++) { + h[assignCmd[c]].isCmd = 1; + h[assignCmd[c]].note = CMDB + c; + } + // "flag" buttons + for (byte i = 140; i < BTN_COUNT; i++) { + h[i].isCmd = 1; + } + // On version 1.2, "button" 140 is shorted (always connected) + h[140].note = HARDWARE_V1_2; + } + +// @LED + /* + This section of the code handles sending + color data to the LED pixels underneath + the hex buttons. + */ + #include <Adafruit_NeoPixel.h> // library of code to interact with the LED array + #define LED_PIN 22 + Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800); + int32_t rainbowDegreeTime = 65'536; // microseconds to go through 1/360 of rainbow + /* + This is actually a hacked together approximation + of the color space OKLAB. A true conversion would + take the hue, saturation, and value bits and + turn them into linear RGB to feed directly into + the LED class. This conversion is... not very OK... + but does the job for now. A proper implementation + of OKLAB is in the works. + + For transforming hues, the okLAB hue degree (0-360) is + mapped to the RGB hue degree from 0 to 65535, using + simple linear interpolation I created by hand comparing + my HexBoard outputs to a Munsell color chip book. + */ + int16_t transformHue(float h) { + float D = fmod(h,360); + if (!perceptual) { + return 65536 * D / 360; + } else { + // red yellow green cyan blue + int hueIn[] = { 0, 9, 18, 102, 117, 135, 142, 155, 203, 240, 252, 261, 306, 333, 360}; + // #ff0000 #ffff00 #00ff00 #00ffff #0000ff #ff00ff + int hueOut[] = { 0, 3640, 5861,10922,12743,16384,21845,27306,32768,38229,43690,49152,54613,58254,65535}; + byte B = 0; + while (D - hueIn[B] > 0) { + B++; + } + float T = (D - hueIn[B - 1]) / (float)(hueIn[B] - hueIn[B - 1]); + return (hueOut[B - 1] * (1 - T)) + (hueOut[B] * T); + } + } + + namespace incandescence + { + /* + const int fixed_shift = 16; + const int fixed_scale = (1 << fixed_shift); + + constexpr int32_t lambda_r = 700*256; + constexpr int32_t lambda_g = 550*256; + constexpr int32_t lambda_b = 450*256; + + constexpr uint32_t C1 = 374183; // W*m^2 + constexpr uint32_t C2 = 14388; // m*K + + int32_t fixed_exp(int32_t x) + { + return (fixed_scale + x + ((x*x) >> 1) + ((x*x*x)/6)); + } + int32_t planckRadiation(int32_t lambda, int32_t temp) + { + int32_t denom = (C2 / (lambda*temp >> fixed_shift)); + return (C1 / (pow(lambda,5))) / (fixed_exp(denom)); + } + */ + + constexpr float lambda_r = 625e-9; // average wavelengths of LED diodes + constexpr float lambda_g = 525e-9; + constexpr float lambda_b = 460e-9; + + constexpr float C1 = 3.74183e-16; // W*m^2 + constexpr float C2 = 1.4388e-2; // m*K + + float maxTemperature = 2400; + float brightnessCoefficient = 745000000.0f; + + float planckRadiation(float lambda, float temp) + { + return (C1 / (pow(lambda,5))) / (exp(C2/(lambda*temp))-1); + } + + float getCoefficient(float lambda, float maxTemperature) + { + float radiation = planckRadiation(lambda, maxTemperature); + return radiation/256.0f; + } + + float getTemperatureFromV(float value) + { + return value; + } + + colorDef getColor(int32_t temp) + { + float r = planckRadiation(lambda_r,temp); + float g = planckRadiation(lambda_g,temp); + float b = planckRadiation(lambda_b,temp); + + float maxVal = max(max(r,g),b); + + float minVal = min(min(r,g),b); + float delta = maxVal - minVal; + float h = 0, s = 0, v = 0; + + if(delta > 0.00001) + { + s = delta/maxVal; + if(maxVal == r) + { + h=60.0*fmodf(((g-b)/delta),6.0); + v = r / getCoefficient(lambda_r,maxTemperature); + } + else if(maxVal == g) + { + h=60.0*(((g-b)/delta)+2.0); + v = g / getCoefficient(lambda_g,maxTemperature); + } + else + { + h=60.0*(((g-b)/delta)+4.0); + v = b / getCoefficient(lambda_b,maxTemperature); + } + v=min(max(v,0),255); + } + + if(h < 0.0) h += 360.0; + return colorDef{h,(byte)(s*255),(byte)(v)}; + } + } + + /* + Saturation and Brightness are taken as is (already in a 0-255 range). + The global brightness / 255 attenuates the resulting color for the + user's brightness selection. Then the resulting RGB (HSV) color is + "un-gamma'd" to be converted to the LED strip color. + */ + uint32_t getLEDcode(colorDef c) { + return strip.gamma32(strip.ColorHSV(transformHue(c.hue),c.sat,c.val * globalBrightness / 255)); + } + /* + This function cycles through each button, and based on what color + palette is active, it calculates the LED color code in the palette, + plus its variations for being animated, played, or out-of-scale, and + stores it for recall during playback and animation. The color + codes remain in the object until this routine is called again. + */ + void setLEDcolorCodes() { + for (byte i = 0; i < LED_COUNT; i++) { + if (!(h[i].isCmd)) { + colorDef setColor; + byte paletteIndex = positiveMod(h[i].stepsFromC,current.tuning().cycleLength); + if (paletteBeginsAtKeyCenter) { + paletteIndex = current.keyDegree(paletteIndex); + } + switch (colorMode) { + case TIERED_COLOR_MODE: // This mode sets the color based on the palettes defined above. + setColor = palette[current.tuningIndex].getColor(paletteIndex); + break; + case RAINBOW_MODE: // This mode assigns the root note as red, and the rest as saturated spectrum colors across the rainbow. + setColor = + { 360 * ((float)paletteIndex / (float)current.tuning().cycleLength) + , SAT_VIVID + , VALUE_NORMAL + }; + break; + case RAINBOW_OF_FIFTHS_MODE: // This mode assigns the root note as red, and the rest as saturated spectrum colors across the rainbow. + { + float stepSize = current.tuning().stepSize; + float octaveCycleLength = 1200.0/current.tuning().stepSize; // This is to prevent non-octave colouring weirdness + float semipaletteIndex = fmodf(h[i].stepsFromC+(octaveCycleLength*256.0),octaveCycleLength); + float keyDegree = fmodf(semipaletteIndex + (current.tuning().spanCtoA() - current.keyStepsFromA), octaveCycleLength); + float fifthSize = ((ratioToCents(3.0/2.0))/stepSize); + float reverseFifth = fifthSize; + switch (current.tuningIndex) + { + case TUNING_17EDO: { reverseFifth = 12 ;}break; // reverse hash of (10*x)%17=x where 10 steps is a 17EDO fifth + case TUNING_19EDO: { reverseFifth = 7 ;}break; // reverse hash of (11*x)%19=x where 11 steps is a 19EDO fifth + case TUNING_22EDO: { reverseFifth = 17 ;}break; // reverse hash of (13*x)%22=x where 13 steps is a 22EDO fifth + case TUNING_24EDO: { reverseFifth = 11 ;}break; // hand-picked best-fit value. This tuning is very unruly + case TUNING_31EDO: { reverseFifth = 19 ;}break; // reverse hash of (18*x)%31=x where 18 steps is a 31EDO fifth + case TUNING_31EDO_ZETA: { reverseFifth = 19 ;}break; + case TUNING_41EDO: { reverseFifth = 12 ;}break; // reverse hash of (24*x)%41=x where 24 steps is a 41EDO fifth + case TUNING_43EDO: { reverseFifth = 31 ;}break; // reverse hash of (25*x)%43=x where 25 steps is a 43EDO fifth + case TUNING_46EDO: { reverseFifth = 29 ;}break; // reverse hash of (27*x)%46=x where 27 steps is a 46EDO fifth + case TUNING_53EDO: { reverseFifth = 12 ;}break; // reverse hash of (31*x)%53=x where 31 steps is a 53EDO fifth + case TUNING_58EDO: { reverseFifth = 12 ;}break; // reverse hash for 29EDO (2 chains of 29 EDO fifths in 58 EDO) + case TUNING_58EDO_ZETA: { reverseFifth = 12 ;}break; + case TUNING_72EDO: { reverseFifth = 7 ;}break; // reverse hash for 12EDO (6 chains of 12 EDO fifths in 72 EDO) + case TUNING_72EDO_ZETA: { reverseFifth = 7 ;}break; + case TUNING_80EDO: { reverseFifth = 63 ;}break; // reverse hash of (47*x)%80=x where 47 steps is an 80EDO fifth + case TUNING_87EDO: { reverseFifth = 41 ;}break; // A hand-picked value, seems to work. 46 also works + case TUNING_BP: { reverseFifth = 5 ;}break; // A hand-picked value; 23 and 64 also work + case TUNING_ALPHA: { reverseFifth = 5 ;}break; // A hand-picked value + case TUNING_BETA: { reverseFifth = 7 ;}break; // reverse hash of (11*x)%19=x where 11 steps is a 19EDO equivalent fifth + case TUNING_GAMMA: { reverseFifth = 12 ;}break; // reverse hash for 17EDO(2 chains of 17 EDO fifths in 34 EDO equivalent) + default: { reverseFifth = fifthSize;} // either the tuning has no fifths or scrambling colors using fifths works + } + + float paletteIndexOfFifths = fmodf((keyDegree*reverseFifth),octaveCycleLength); + setColor = + { 360.0f * (paletteIndexOfFifths/(1200.0f/stepSize)) + , SAT_VIVID + , VALUE_NORMAL + }; + } + break; + case PIANO_ALT_COLOR_MODE: + { + float octaveCycleLength = 1200.0/current.tuning().stepSize; // This is to prevent non-octave colouring weirdness + float semipaletteIndex = fmodf(h[i].stepsFromC+(octaveCycleLength*256.0),octaveCycleLength); + float keyDegree = (12.0f/octaveCycleLength)*semipaletteIndex; + if((int)round(keyDegree)%12 == 1 || (int)round(keyDegree)%12 == 3 || (int)round(keyDegree)%12 == 6 || (int)round(keyDegree)%12 == 8 || (int)round(keyDegree)%12 == 10) + { + float deviationFromDiatonic = (float)((int)round(keyDegree) - keyDegree)*180.0; // range from 180 to 360 + // +360 for proper fmodf; 180 is the opposite tint of 0; 30 is midway between yellow and red; + setColor = {fmodf(360.0+180.0+30.0+deviationFromDiatonic,360.0f),SAT_VIVID,VALUE_NORMAL}; + } + else // White key + { + float deviationFromDiatonic = (((float)((int)round(keyDegree))) - (keyDegree))*180.0; // from -60 to 120 + setColor = {fmodf(360.0+0.0+30.0+deviationFromDiatonic,360.0f),SAT_VIVID,VALUE_NORMAL}; + } + } + break; + case PIANO_COLOR_MODE: + { + float octaveCycleLength = 1200.0/current.tuning().stepSize; // This is to prevent non-octave colouring weirdness + float semipaletteIndex = fmodf(h[i].stepsFromC+(octaveCycleLength*256.0),octaveCycleLength); + float keyDegree = (12.0f/octaveCycleLength)*semipaletteIndex; + if((int)round(keyDegree)%12 == 1 || (int)round(keyDegree)%12 == 3 || (int)round(keyDegree)%12 == 6 || (int)round(keyDegree)%12 == 8 || (int)round(keyDegree)%12 == 10) + { + float deviationFromDiatonic = ((float)((int)round(keyDegree) - keyDegree) * 3072.0f)/12.0; + uint8_t tint = (uint8_t)(abs(round(deviationFromDiatonic))); + tint = strip.gamma8(tint); + setColor = {360 * (fmodf(round(keyDegree),12.0f) / 12.0f),SAT_TINT,VALUE_BLACK}; + } + else // White key + { + float deviationFromDiatonic = ((((float)((int)round(keyDegree))) - (keyDegree)) * 3072.0f)/12.0; + uint8_t tint = 255 - (uint8_t)(abs(round(deviationFromDiatonic))); + tint = strip.gamma8(tint); + setColor = {360 * (fmodf(round(keyDegree),12.0f) / 12.0f),SAT_TINT,VALUE_NORMAL}; + } + } + break; + case PIANO_INCANDESCENT_COLOR_MODE: + { + float octaveCycleLength = 1200.0/current.tuning().stepSize; // This is to prevent non-octave colouring weirdness + float semipaletteIndex = fmodf(h[i].stepsFromC+(octaveCycleLength*256.0),octaveCycleLength); + float keyDegree = (12.0f/octaveCycleLength)*semipaletteIndex; + float tint, deviationFromDiatonic; + if((int)round(keyDegree)%12 == 1 || (int)round(keyDegree)%12 == 3 || (int)round(keyDegree)%12 == 6 || (int)round(keyDegree)%12 == 8 || (int)round(keyDegree)%12 == 10) + { + deviationFromDiatonic = (round(keyDegree) - keyDegree); + deviationFromDiatonic = (abs(deviationFromDiatonic)); // from 0 to 0.5 + } + else // White key + { + deviationFromDiatonic = (round(keyDegree) - keyDegree); + deviationFromDiatonic = 1.0-abs(deviationFromDiatonic); // from 1 to 0.5 + } + auto baseTemperature = 800; + tint = ((sqrt(deviationFromDiatonic))) * (incandescence::maxTemperature-baseTemperature) + baseTemperature; + + setColor = incandescence::getColor(tint); + } + break; + case ALTERNATE_COLOR_MODE: + // This mode assigns each note a color based on the interval it forms with the root note. + // This is an adaptation of an algorithm developed by Nicholas Fox and Kite Giedraitis. + float cents = current.tuning().stepSize * paletteIndex; + bool perf = 0; + float center = 0.0; + if (cents < 50) {perf = 1; center = 0.0;} + else if ((cents >= 50) && (cents < 250)) { center = 147.1;} + else if ((cents >= 250) && (cents < 450)) { center = 351.0;} + else if ((cents >= 450) && (cents < 600)) {perf = 1; center = 498.0;} + else if ((cents >= 600) && (cents <= 750)) {perf = 1; center = 702.0;} + else if ((cents > 750) && (cents <= 950)) { center = 849.0;} + else if ((cents > 950) && (cents <=1150)) { center = 1053.0;} + else if ((cents > 1150) && (cents < 1250)) {perf = 1; center = 1200.0;} + else if ((cents >=1250) && (cents < 1450)) { center = 1347.1;} + else if ((cents >=1450) && (cents < 1650)) { center = 1551.0;} + else if ((cents >=1650) && (cents < 1850)) {perf = 1; center = 1698.0;} + else if ((cents >=1800) && (cents <=1950)) {perf = 1; center = 1902.0;} + float offCenter = cents - center; + int16_t altHue = positiveMod((int)(150 + (perf * ((offCenter > 0) ? -72 : 72)) - round(1.44 * offCenter)), 360); + float deSaturate = perf * (abs(offCenter) < 20) * (1 - (0.02 * abs(offCenter))); + setColor = { + (float)altHue, + (byte)(255 - round(255 * deSaturate)), + (byte)(cents ? VALUE_SHADE : VALUE_NORMAL) }; + break; + } + h[i].LEDcodeRest = getLEDcode(setColor); + h[i].LEDcodePlay = getLEDcode(setColor.tint()); + h[i].LEDcodeDim = getLEDcode(setColor.shade()); + setColor = {HUE_NONE,SAT_BW,VALUE_BLACK}; + h[i].LEDcodeOff = getLEDcode(setColor); // turn off entirely + h[i].LEDcodeAnim = h[i].LEDcodePlay; + } + } + sendToLog("LED codes re-calculated."); + } + + void resetVelocityLEDs() { + colorDef tempColor = + { (runTime % (rainbowDegreeTime * 360)) / (float)rainbowDegreeTime + , SAT_MODERATE + , byteLerp(0,255,85,127,velWheel.curValue) + }; + strip.setPixelColor(assignCmd[0], getLEDcode(tempColor)); + + tempColor.val = byteLerp(0,255,42,85,velWheel.curValue); + strip.setPixelColor(assignCmd[1], getLEDcode(tempColor)); + + tempColor.val = byteLerp(0,255,0,42,velWheel.curValue); + strip.setPixelColor(assignCmd[2], getLEDcode(tempColor)); + } + void resetWheelLEDs() { + // middle button + byte tempSat = SAT_BW; + colorDef tempColor = {HUE_NONE, tempSat, (byte)(toggleWheel ? VALUE_SHADE : VALUE_LOW)}; + strip.setPixelColor(assignCmd[3], getLEDcode(tempColor)); + if (toggleWheel) { + // pb red / green + tempSat = byteLerp(SAT_BW,SAT_VIVID,0,8192,abs(pbWheel.curValue)); + tempColor = {(float)((pbWheel.curValue > 0) ? HUE_RED : HUE_CYAN), tempSat, VALUE_FULL}; + strip.setPixelColor(assignCmd[5], getLEDcode(tempColor)); + + tempColor.val = tempSat * (pbWheel.curValue > 0); + strip.setPixelColor(assignCmd[4], getLEDcode(tempColor)); + + tempColor.val = tempSat * (pbWheel.curValue < 0); + strip.setPixelColor(assignCmd[6], getLEDcode(tempColor)); + } else { + // mod blue / yellow + tempSat = byteLerp(SAT_BW,SAT_VIVID,0,64,abs(modWheel.curValue - 63)); + tempColor = { + (float)((modWheel.curValue > 63) ? HUE_YELLOW : HUE_INDIGO), + tempSat, + (byte)(127 + (tempSat / 2)) + }; + strip.setPixelColor(assignCmd[6], getLEDcode(tempColor)); + + if (modWheel.curValue <= 63) { + tempColor.val = 127 - (tempSat / 2); + } + strip.setPixelColor(assignCmd[5], getLEDcode(tempColor)); + + tempColor.val = tempSat * (modWheel.curValue > 63); + strip.setPixelColor(assignCmd[4], getLEDcode(tempColor)); + } + } + uint32_t applyNotePixelColor(byte x) { + if (h[x].animate) { return h[x].LEDcodeAnim; + } else if (h[x].MIDIch) { return h[x].LEDcodePlay; + } else if (h[x].inScale) { return h[x].LEDcodeRest; + } else if (scaleLock) { return h[x].LEDcodeOff; + } else { return h[x].LEDcodeDim; + } + } + void setupLEDs() { + strip.begin(); // INITIALIZE NeoPixel strip object + strip.show(); // Turn OFF all pixels ASAP + sendToLog("LEDs started..."); + setLEDcolorCodes(); + } + void lightUpLEDs() { + for (byte i = 0; i < LED_COUNT; i++) { + if (!(h[i].isCmd)) { + strip.setPixelColor(i,applyNotePixelColor(i)); + } + } + resetVelocityLEDs(); + resetWheelLEDs(); + strip.show(); + } + +// @MIDI + /* + This section of the code handles all + things related to MIDI messages. + */ + #include <Adafruit_TinyUSB.h> // library of code to get the USB port working + #include <MIDI.h> // library of code to send and receive MIDI messages + /* + These values support correct MIDI output. + Note frequencies are converted to MIDI note + and pitch bend messages assuming note 69 + equals concert A4, as defined below. + */ + #define CONCERT_A_HZ 440.0 + /* + Pitch bend messages are calibrated + to a pitch bend range where + -8192 to 8191 = -200 to +200 cents, + or two semitones. + */ + #define PITCH_BEND_SEMIS 2 + /* + We use pitch bends to retune notes in MPE mode. + Some setups can adjust to fit this, but some need us to adjust it. + */ + byte MPEpitchBendSemis = 48; + /* + Create a new instance of the Arduino MIDI Library, + and attach usb_midi as the transport. + */ + Adafruit_USBD_MIDI usb_midi; + MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, UMIDI); + MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, SMIDI); + // midiD takes the following bitwise flags + #define MIDID_NONE 0 + #define MIDID_USB 1 + #define MIDID_SER 2 + #define MIDID_BOTH 3 + byte midiD = MIDID_USB | MIDID_SER; + + // What program change number we last sent (General MIDI/Roland MT-32) + byte programChange = 0; + + std::queue<byte> MPEchQueue; + byte MPEpitchBendsNeeded; + + float freqToMIDI(float Hz) { // formula to convert from Hz to MIDI note + return 69.0 + 12.0 * log2f(Hz / 440.0); + } + float MIDItoFreq(float midi) { // formula to convert from MIDI note to Hz + return 440.0 * exp2((midi - 69.0) / 12.0); + } + float stepsToMIDI(int16_t stepsFromA) { // return the MIDI pitch associated + return freqToMIDI(CONCERT_A_HZ) + ((float)stepsFromA * (float)current.tuning().stepSize / 100.0); + } + + void setPitchBendRange(byte Ch, byte semitones) { + if (midiD&MIDID_USB) { + UMIDI.beginRpn(0, Ch); + UMIDI.sendRpnValue(semitones << 7, Ch); + UMIDI.endRpn(Ch); + } + if (midiD&MIDID_SER) { + SMIDI.beginRpn(0, Ch); + SMIDI.sendRpnValue(semitones << 7, Ch); + SMIDI.endRpn(Ch); + } + sendToLog( + "set pitch bend range on ch " + + std::to_string(Ch) + " to be " + + std::to_string(semitones) + " semitones" + ); + } + + void setMPEzone(byte masterCh, byte sizeOfZone) { + if (midiD&MIDID_USB) { + UMIDI.beginRpn(6, masterCh); + UMIDI.sendRpnValue(sizeOfZone << 7, masterCh); + UMIDI.endRpn(masterCh); + } + if (midiD&MIDID_SER) { + SMIDI.beginRpn(6, masterCh); + SMIDI.sendRpnValue(sizeOfZone << 7, masterCh); + SMIDI.endRpn(masterCh); + } + sendToLog( + "tried sending MIDI msg to set MPE zone, master ch " + + std::to_string(masterCh) + ", zone of this size: " + std::to_string(sizeOfZone) + ); + } + + void resetTuningMIDI() { + /* + currently the only way that microtonal + MIDI works is via MPE (MIDI polyphonic expression). + This assigns re-tuned notes to an independent channel + so they can be pitched separately. + + if operating in a standard 12-EDO tuning, or in a + tuning with steps that are all exact multiples of + 100 cents, then MPE is not necessary. + */ + if (current.tuning().stepSize == 100.0 && !useDynamicJustIntonation && !useJustIntonationBPM && !forceEnableMPE) { + MPEpitchBendsNeeded = 1; // Standard 12EDO, single-channel mode + /* this was an attempt to allow unlimited polyphony for certain EDOs. doesn't work in Logic Pro. + } else if (round(current.tuning().cycleLength * current.tuning().stepSize) == 1200) { + MPEpitchBendsNeeded = current.tuning().cycleLength / std::gcd(12, current.tuning().cycleLength); + */ + } else { + MPEpitchBendsNeeded = 255; // Enables MPE mode when in Just Intonation or microtonal tuning + } + if (MPEpitchBendsNeeded > 15) { + setMPEzone(1, 15); // MPE zone 1 = ch 2 thru 16 + while (!MPEchQueue.empty()) { // empty the channel queue + MPEchQueue.pop(); + } + for (byte i = 2; i <= 16; i++) { + MPEchQueue.push(i); // fill the channel queue + sendToLog("pushed ch " + std::to_string(i) + " to the open channel queue"); + } + } else { + setMPEzone(1, 0); + } + // force pitch bend back to the expected range of 2 semitones. + for (byte i = 1; i <= 16; i++) { + if(midiD&MIDID_USB)UMIDI.sendControlChange(123, 0, i); + if(midiD&MIDID_SER)SMIDI.sendControlChange(123, 0, i); + setPitchBendRange(i, MPEpitchBendSemis); + } + } + + void sendMIDImodulationToCh1() { + if(midiD&MIDID_USB)UMIDI.sendControlChange(1, modWheel.curValue, 1); + if(midiD&MIDID_SER)SMIDI.sendControlChange(1, modWheel.curValue, 1); + sendToLog("sent mod value " + std::to_string(modWheel.curValue) + " to ch 1"); + } + + void sendMIDIpitchBendToCh1() { + if(midiD&MIDID_USB)UMIDI.sendPitchBend(pbWheel.curValue, 1); + if(midiD&MIDID_SER)SMIDI.sendPitchBend(pbWheel.curValue, 1); + sendToLog("sent pb wheel value " + std::to_string(pbWheel.curValue) + " to ch 1"); + } + +////////////////////////////////////////////////////////////////// +// Dynamic just intonation code start + + + // HOW BPM SYNC WORKS: + // The idea is to round off the note frequency to a certain precision. + // If you round the note frequencies of a C-E-G chord to integer values (261.626Hz / 329.628Hz / 391.995Hz) - + // you'll get a chord with ratio of 262/294/392. + // As a result, because these frequency values are always a multiple of 1 Hz - + // they all will be guaranteed to finish their wave cycle in 1 second. + // Thus, this chord will beat at 1 Hz if not faster. + + // By knowing the pressed keys it is possible to pick better ratios, ideally having 262/327.5/393 (4/5/6) in this example + + // TODO: make BPM sync work with dynamic just intonation to make pure just intonation achieveable. + // Without it - this implementation provides you with n-EDO-sized independent JI rings, unconnected to eachother; + // TODO: replace floating point math with integer math; + // TODO: replace std::pair<byte,byte> ratios with precomputed floating(or fixed) point ratios; + // TODO: generate the table of ratios with a constexpr function rather than holding a huge block of hardcoded values in the code; + // TODO: It is a good idea to octave-reduce the ratios, and adjust the code to calculate pitchbend against the octave reduced set of ratios for significant performance improvement; + // TODO: implement dynamic just intonation for buzzer + // TODO: There is an issue with tuning error in this line: + // UMIDI.sendPitchBend(h[x].bend + justIntonationRetune(x), h[x].MIDIch); + // The retuning is done twice, and rounding errors will add up. This can be heard if you play a unison with different pitches that collapse into 1/1 by dynamic just intonation (or if you use BPM sync with a really high frequency). You will sometimes hear extremely slow beating despite both notes being forced into the same pitch + + + // This is a list of ratios sorted from the simplest ones to the most complex ones. The code searches for a first match that's good enough within 1/4 of an EDO step, literally bruteforcing through the list. As a result - the simplest ratio is chosen before more comples ones, prioritising consonant ratios first. In case not a single good ratio is found - the best one found so far is chosen instead + + // byte pair was chosen to preserve space. The ratio is "unpacked" later + std::vector<std::pair<byte,byte>> ratios = + { + {1,1}, + {1,2}, + {2,1}, + {3,1}, + {1,3}, + {1,4}, + {2,3}, + {1,4}, + {4,1}, + {3,2}, + {1,5}, + {5,1}, + {5,2}, + {1,6}, + {3,4}, + {5,2}, + {4,3}, + {6,1}, + {2,5}, + {5,3}, + {1,7}, + {7,1}, + {3,5}, + {2,7}, + {8,1}, + {5,4}, + {1,8}, + {4,5}, + {7,2}, + {9,1}, + {7,3}, + {1,9}, + {3,7}, + {1,9}, + {1,10}, + {10,1}, + {7,4}, + {3,8}, + {8,3}, + {6,5}, + {1,10}, + {8,3}, + {4,7}, + {2,9}, + {9,2}, + {5,6}, + {11,1}, + {7,5}, + {1,11}, + {5,7}, + {5,8}, + {3,10}, + {4,9}, + {3,10}, + {2,11}, + {11,2}, + {12,1}, + {1,12}, + {9,4}, + {5,8}, + {1,12}, + {8,5}, + {10,3}, + {6,7}, + {7,6}, + {12,1}, + {9,5}, + {1,13}, + {3,11}, + {11,3}, + {9,5}, + {5,9}, + {13,1}, + {14,1}, + {13,2}, + {11,4}, + {1,14}, + {2,13}, + {8,7}, + {7,8}, + {4,11}, + {9,7}, + {11,5}, + {7,9}, + {5,11}, + {13,3}, + {3,13}, + {15,1}, + {1,15}, + {4,13}, + {2,15}, + {10,7}, + {2,15}, + {11,6}, + {8,9}, + {16,1}, + {12,5}, + {3,14}, + {7,10}, + {5,12}, + {14,3}, + {9,8}, + {15,2}, + {13,4}, + {1,16}, + {6,11}, + {17,1}, + {1,17}, + {5,13}, + {13,5}, + {4,15}, + {17,2}, + {9,10}, + {2,17}, + {9,10}, + {12,7}, + {10,9}, + {11,8}, + {16,3}, + {3,16}, + {13,6}, + {14,5}, + {15,4}, + {18,1}, + {8,11}, + {1,18}, + {4,15}, + {5,14}, + {6,13}, + {7,12}, + {19,1}, + {11,9}, + {17,3}, + {3,17}, + {9,11}, + {1,19}, + {5,16}, + {20,1}, + {8,13}, + {10,11}, + {20,1}, + {19,2}, + {1,20}, + {11,10}, + {2,19}, + {13,8}, + {17,4}, + {4,17}, + {16,5}, + {1,20}, + {13,9}, + {21,1}, + {7,15}, + {9,13}, + {19,3}, + {17,5}, + {3,19}, + {5,17}, + {15,7}, + {1,21}, + {13,10}, + {3,20}, + {12,11}, + {21,2}, + {18,5}, + {6,17}, + {15,8}, + {3,20}, + {20,3}, + {19,4}, + {5,18}, + {14,9}, + {9,14}, + {8,15}, + {2,21}, + {1,22}, + {17,6}, + {22,1}, + {10,13}, + {11,12}, + {4,19}, + {5,19}, + {1,23}, + {19,5}, + {23,1}, + {18,7}, + {8,17}, + {21,4}, + {22,3}, + {3,22}, + {7,18}, + {6,19}, + {12,13}, + {19,6}, + {2,23}, + {9,16}, + {17,8}, + {24,1}, + {13,12}, + {1,24}, + {23,2}, + {4,21}, + {16,9}, + {9,17}, + {1,25}, + {5,21}, + {25,1}, + {15,11}, + {17,9}, + {3,23}, + {23,3}, + {11,15}, + {21,5}, + {17,10}, + {10,17}, + {19,8}, + {5,22}, + {20,7}, + {22,5}, + {23,4}, + {7,20}, + {1,26}, + {8,19}, + {25,2}, + {26,1}, + {2,25}, + {4,23}, + {5,23}, + {9,19}, + {1,27}, + {13,15}, + {3,25}, + {15,13}, + {23,5}, + {19,9}, + {27,1}, + {25,3}, + {25,4}, + {14,15}, + {27,2}, + {9,20}, + {2,27}, + {26,3}, + {20,9}, + {17,12}, + {1,28}, + {24,5}, + {10,19}, + {12,17}, + {23,6}, + {21,8}, + {11,18}, + {19,10}, + {5,24}, + {4,25}, + {5,24}, + {3,26}, + {18,11}, + {28,1}, + {8,21}, + {6,23}, + {15,14}, + {1,29}, + {29,1}, + {23,8}, + {24,7}, + {7,24}, + {6,25}, + {10,21}, + {30,1}, + {5,26}, + {25,6}, + {11,20}, + {30,1}, + {1,30}, + {16,15}, + {8,23}, + {4,27}, + {2,29}, + {26,5}, + {9,22}, + {29,2}, + {27,4}, + {28,3}, + {15,16}, + {20,11}, + {18,13}, + {22,9}, + {21,10}, + {13,18}, + {12,19}, + {19,12}, + {3,28}, + {17,15}, + {15,17}, + {29,3}, + {31,1}, + {27,5}, + {3,29}, + {9,23}, + {23,9}, + {1,31}, + {5,27}, + {13,20}, + {2,31}, + {28,5}, + {1,32}, + {29,4}, + {25,8}, + {20,13}, + {4,29}, + {8,25}, + {23,10}, + {10,23}, + {5,28}, + {31,2}, + {32,1}, + {33,1}, + {3,31}, + {1,33}, + {5,29}, + {15,19}, + {9,25}, + {31,3}, + {19,15}, + {25,9}, + {29,5}, + {33,2}, + {6,29}, + {17,18}, + {34,1}, + {2,33}, + {32,3}, + {26,9}, + {31,4}, + {27,8}, + {1,34}, + {4,31}, + {18,17}, + {29,6}, + {8,27}, + {12,23}, + {11,24}, + {3,32}, + {9,26}, + {23,12}, + {24,11}, + {5,31}, + {31,5}, + {35,1}, + {1,35}, + {1,36}, + {30,7}, + {24,13}, + {18,19}, + {36,1}, + {6,31}, + {28,9}, + {34,3}, + {36,1}, + {15,22}, + {7,30}, + {8,29}, + {1,36}, + {17,20}, + {29,8}, + {4,33}, + {12,25}, + {10,27}, + {32,5}, + {20,17}, + {3,34}, + {25,12}, + {5,32}, + {2,35}, + {33,4}, + {22,15}, + {9,28}, + {13,24}, + {27,10}, + {35,2}, + {19,18}, + {31,6}, + {9,29}, + {35,3}, + {29,9}, + {5,33}, + {23,15}, + {33,5}, + {15,23}, + {37,1}, + {3,35}, + {1,37}, + {10,29}, + {31,8}, + {5,34}, + {4,35}, + {1,38}, + {35,4}, + {29,10}, + {34,5}, + {37,2}, + {2,37}, + {19,20}, + {8,31}, + {20,19}, + {38,1}, + {31,9}, + {39,1}, + {37,3}, + {3,37}, + {9,31}, + {1,39}, + {38,3}, + {11,30}, + {9,32}, + {26,15}, + {31,10}, + {29,12}, + {32,9}, + {20,21}, + {2,39}, + {35,6}, + {33,8}, + {5,36}, + {37,4}, + {21,20}, + {15,26}, + {40,1}, + {8,33}, + {10,31}, + {30,11}, + {12,29}, + {23,18}, + {17,24}, + {36,5}, + {40,1}, + {1,40}, + {4,37}, + {24,17}, + {39,2}, + {6,35}, + {18,23}, + {3,38}, + {41,1}, + {37,5}, + {5,37}, + {1,41}, + {33,10}, + {3,40}, + {4,39}, + {1,42}, + {37,6}, + {13,30}, + {12,31}, + {42,1}, + {10,33}, + {7,36}, + {36,7}, + {9,34}, + {41,2}, + {35,8}, + {40,3}, + {8,35}, + {5,38}, + {2,41}, + {39,4}, + {38,5} + }; + + int16_t centsToRelativePitchBend(float cents){ + return round(cents * (8192.0/(100.0*MPEpitchBendSemis))); + } + + float ratioToCents(float ratio){ + return 1200.0 * (std::log(ratio) / std::log(2.0)); + } + + int16_t justIntonationRetune(byte x) + { + if(useDynamicJustIntonation == false && useJustIntonationBPM == false) + { + return 0; + } + int16_t pitchAdjustment = 0; + float pitchAdjustmentCents = 0; + float basePitchOffset = 0; + //int16_t degree = (current.keyDegree(h[x].stepsFromC + current.transpose + current.tuning().spanCtoA())); + //float buttonStepsFromA = degree; + if(useJustIntonationBPM) + { + float buttonStepsFromA = -current.tuning().spanCtoA() - h[x].stepsFromC; + // It was planned to use integer math but floating point arithmetics works fast enough so far + float rounding = ((float)justIntonationBPM / 60.0 * justIntonationBPM_Multiplier); + pitchAdjustmentCents = (buttonStepsFromA * current.tuning().stepSize) - + ratioToCents(round(440.0 / rounding) / round(h[x].frequency / rounding)); + + if(pressedKeyIDs.size() > 1 && useDynamicJustIntonation) + { + basePitchOffset = ((-current.tuning().spanCtoA() - h[pressedKeyIDs[0]].stepsFromC) * current.tuning().stepSize) - + ratioToCents(round(440.0 / rounding) / round(h[pressedKeyIDs[0]].frequency / rounding)); + } + else + { + pitchAdjustment += centsToRelativePitchBend(pitchAdjustmentCents); + } + } + if(useDynamicJustIntonation && pressedKeyIDs.size() > 1) + { + //bool ratioFound = false; // I might need this one later + bool preferSmallRatios = true; // if false - the closest found ratio will be chosen from the ratio table + + // detune within a 1/4 of a step, avoid wild detuning but cover the entire pitch range + float errorThreshold = current.tuning().stepSize / 4.0; + float deviation = INFINITY; + float EDOCents = ratioToCents(h[pressedKeyIDs[0]].frequency / h[x].frequency); + std::pair<byte,byte> selectedRatio; + + for(int i = 0; i < ratios.size();i++) + { + auto ratio = ratios[i]; + float ratio0 = ratio.first; + float ratio1 = ratio.second; + //if(h[pressedKeyIDs[0]].note < h[x].note) + //{ + // std::swap(ratio1,ratio0); + //} + float ratioCents = ratioToCents(ratio0/ratio1); + + if(std::abs(deviation) > std::abs(ratioCents - EDOCents)) + { + deviation = (EDOCents - ratioCents); + selectedRatio.first = ratio0; + selectedRatio.second = ratio1; + if(preferSmallRatios && std::abs(deviation) < errorThreshold) + { + //ratioFound = true; + break; + } + } + } + //if(ratioFound) + { + pitchAdjustment += centsToRelativePitchBend(deviation + basePitchOffset); + } + } + return pitchAdjustment; + } + + +void tryMIDInoteOn(byte x) { + // This gets called on any non-command hex that is not scale-locked. + if (!(h[x].MIDIch)) { + if (MPEpitchBendsNeeded == 1) { + h[x].MIDIch = defaultMidiChannel; + } else if (MPEpitchBendsNeeded <= 15) { + h[x].MIDIch = 2 + positiveMod(h[x].stepsFromC, MPEpitchBendsNeeded); + } else { + if (MPEchQueue.empty()) { // If there aren't any open channels + sendToLog("MPE queue was empty so did not play a MIDI note"); + } else { + h[x].MIDIch = MPEchQueue.front(); // Value in MIDI terms (1-16) + MPEchQueue.pop(); + sendToLog("Popped " + std::to_string(h[x].MIDIch) + " off the MPE queue"); + } + } + + if (h[x].MIDIch) { + pressedKeyIDs.push_back(x); // Dynamic JI pressed key tracking + // First, send the pitch bend (if applicable) + if (MPEpitchBendsNeeded != 1) { + if (midiD & MIDID_USB) UMIDI.sendPitchBend(h[x].bend + justIntonationRetune(x), h[x].MIDIch); // ch 1-16 + if (midiD & MIDID_SER) SMIDI.sendPitchBend(h[x].bend + justIntonationRetune(x), h[x].MIDIch); // ch 1-16 + } + + // Then, send the note-on message + if (midiD & MIDID_USB) UMIDI.sendNoteOn(h[x].note, velWheel.curValue, h[x].MIDIch); // ch 1-16 + if (midiD & MIDID_SER) SMIDI.sendNoteOn(h[x].note, velWheel.curValue, h[x].MIDIch); // ch 1-16 + + sendToLog( + "Sent MIDI pitch bend: " + std::to_string((MPEpitchBendsNeeded != 1) ? h[x].bend + justIntonationRetune(x) : 0) + + " to ch " + std::to_string(h[x].MIDIch) + ); + sendToLog( + "Sent MIDI noteOn: " + std::to_string(h[x].note) + + " vel " + std::to_string(velWheel.curValue) + + " ch " + std::to_string(h[x].MIDIch) + ); + } + } +} + + void tryMIDInoteOff(byte x) { + // this gets called on any non-command hex + // that is not scale-locked. + if (h[x].MIDIch) { // but just in case, check + if(midiD&MIDID_USB)UMIDI.sendNoteOff(h[x].note, velWheel.curValue, h[x].MIDIch); + if(midiD&MIDID_SER)SMIDI.sendNoteOff(h[x].note, velWheel.curValue, h[x].MIDIch); + pressedKeyIDs.pop_back(); // Dynamic JI pressed key tracking + sendToLog( + "sent note off: " + std::to_string(h[x].note) + + " pb " + std::to_string(h[x].bend) + + " vel " + std::to_string(velWheel.curValue) + + " ch " + std::to_string(h[x].MIDIch) + ); + if (MPEpitchBendsNeeded > 15 && h[x].MIDIch > 1) { + MPEchQueue.push(h[x].MIDIch); + sendToLog("pushed " + std::to_string(h[x].MIDIch) + " on the MPE queue"); + } + h[x].MIDIch = 0; + } + } + + void setupMIDI() { + usb_midi.setStringDescriptor("HexBoard MIDI"); // Initialize MIDI, and listen to all MIDI channels + UMIDI.begin(MIDI_CHANNEL_OMNI); // This will also call usb_midi's begin() + SMIDI.begin(MIDI_CHANNEL_OMNI); + resetTuningMIDI(); + sendToLog("setupMIDI okay"); + } + +// @synth + /* + This section of the code handles audio + output via the piezo buzzer and/or the + headphone jack (on hardware v1.2 only) + */ + #include "hardware/pwm.h" // library of code to access the processor's built in pulse wave modulation features + #include "hardware/irq.h" // library of code to let you interrupt code execution to run something of higher priority + /* + It is more convenient to pre-define the correct + pulse wave modulation slice and channel associated + with the PIEZO_PIN on this processor (see RP2040 + manual) than to have it looked up each time. + */ + #define PIEZO_PIN 23 + #define PIEZO_SLICE 3 + #define PIEZO_CHNL 1 + #define AJACK_PIN 25 + #define AJACK_SLICE 4 + #define AJACK_CHNL 1 + // midiD takes the following bitwise flags + #define AUDIO_NONE 0 + #define AUDIO_PIEZO 1 + #define AUDIO_AJACK 2 + #define AUDIO_BOTH 3 + byte audioD = AUDIO_PIEZO | AUDIO_AJACK; + /* + These definitions provide 8-bit samples to emulate. + You can add your own as desired; it must + be an array of 256 values, each from 0 to 255. + Ideally the waveform is normalized so that the + peaks are at 0 to 255, with 127 representing + no wave movement. + */ + byte sine[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, + 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, + 27, 29, 31, 33, 35, 37, 39, 42, 44, 46, 49, 51, 54, 56, 59, 62, + 64, 67, 70, 73, 76, 79, 81, 84, 87, 90, 93, 96, 99, 103, 106, 109, + 112, 115, 118, 121, 124, 127, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, + 162, 165, 168, 171, 174, 176, 179, 182, 185, 188, 191, 193, 196, 199, 201, 204, + 206, 209, 211, 213, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 237, + 239, 240, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 254, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254, 253, 252, 252, + 251, 250, 249, 248, 247, 246, 245, 243, 242, 240, 239, 237, 236, 234, 232, 230, + 228, 226, 224, 222, 220, 218, 216, 213, 211, 209, 206, 204, 201, 199, 196, 193, + 191, 188, 185, 182, 179, 176, 174, 171, 168, 165, 162, 159, 156, 152, 149, 146, + 143, 140, 137, 134, 131, 127, 124, 121, 118, 115, 112, 109, 106, 103, 99, 96, + 93, 90, 87, 84, 81, 79, 76, 73, 70, 67, 64, 62, 59, 56, 54, 51, + 49, 46, 44, 42, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 18, + 16, 15, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1 + }; + byte strings[] = { + 0, 0, 0, 1, 3, 6, 10, 14, 20, 26, 33, 41, 50, 59, 68, 77, + 87, 97, 106, 115, 124, 132, 140, 146, 152, 157, 161, 164, 166, 167, 167, 167, + 165, 163, 160, 157, 153, 149, 144, 140, 135, 130, 126, 122, 118, 114, 111, 109, + 106, 104, 103, 101, 101, 100, 100, 100, 100, 101, 101, 102, 103, 103, 104, 105, + 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 119, 120, 121, 123, 124, + 126, 127, 129, 131, 132, 134, 135, 136, 138, 139, 140, 141, 142, 144, 145, 146, + 147, 148, 149, 150, 151, 152, 152, 153, 154, 154, 155, 155, 155, 155, 154, 154, + 152, 151, 149, 146, 144, 140, 137, 133, 129, 125, 120, 115, 111, 106, 102, 98, + 95, 92, 90, 88, 88, 88, 89, 91, 94, 98, 103, 109, 115, 123, 131, 140, + 149, 158, 168, 178, 187, 196, 205, 214, 222, 229, 235, 241, 245, 249, 252, 254, + 255, 255, 255, 254, 253, 250, 248, 245, 242, 239, 236, 233, 230, 227, 224, 222, + 220, 218, 216, 215, 214, 213, 212, 211, 210, 210, 209, 208, 207, 206, 205, 203, + 201, 199, 197, 194, 191, 188, 184, 180, 175, 171, 166, 161, 156, 150, 145, 139, + 133, 127, 122, 116, 110, 105, 99, 94, 89, 84, 80, 75, 71, 67, 64, 61, + 58, 56, 54, 52, 50, 49, 48, 47, 46, 45, 45, 44, 43, 42, 41, 40, + 39, 37, 35, 33, 31, 28, 25, 22, 19, 16, 13, 10, 7, 5, 2, 1 + }; + byte clarinet[] = { + 0, 0, 2, 7, 14, 21, 30, 38, 47, 54, 61, 66, 70, 72, 73, 74, + 73, 73, 72, 71, 70, 71, 72, 74, 76, 80, 84, 88, 93, 97, 101, 105, + 109, 111, 113, 114, 114, 114, 113, 112, 111, 110, 109, 109, 109, 110, 112, 114, + 116, 118, 121, 123, 126, 127, 128, 129, 128, 127, 126, 123, 121, 118, 116, 114, + 112, 110, 109, 109, 109, 110, 111, 112, 113, 114, 114, 114, 113, 111, 109, 105, + 101, 97, 93, 88, 84, 80, 76, 74, 72, 71, 70, 71, 72, 73, 73, 74, + 73, 72, 70, 66, 61, 54, 47, 38, 30, 21, 14, 7, 2, 0, 0, 2, + 9, 18, 31, 46, 64, 84, 105, 127, 150, 171, 191, 209, 224, 237, 246, 252, + 255, 255, 253, 248, 241, 234, 225, 217, 208, 201, 194, 189, 185, 183, 182, 181, + 182, 182, 183, 184, 185, 184, 183, 181, 179, 175, 171, 167, 162, 158, 154, 150, + 146, 144, 142, 141, 141, 141, 142, 143, 144, 145, 146, 146, 146, 145, 143, 141, + 139, 136, 134, 132, 129, 128, 127, 126, 127, 128, 129, 132, 134, 136, 139, 141, + 143, 145, 146, 146, 146, 145, 144, 143, 142, 141, 141, 141, 142, 144, 146, 150, + 154, 158, 162, 167, 171, 175, 179, 181, 183, 184, 185, 184, 183, 182, 182, 181, + 182, 183, 185, 189, 194, 201, 208, 217, 225, 234, 241, 248, 253, 255, 255, 252, + 246, 237, 224, 209, 191, 171, 150, 127, 105, 84, 64, 46, 31, 18, 9, 2, + }; + /* + The hybrid synth sound blends between + square, saw, and triangle waveforms + at different frequencies. Said frequencies + are controlled via constants here. + */ + #define TRANSITION_SQUARE 220.0 + #define TRANSITION_SAW_LOW 440.0 + #define TRANSITION_SAW_HIGH 880.0 + #define TRANSITION_TRIANGLE 1760.0 + /* + The poll interval represents how often a + new sample value is emulated on the PWM + hardware. It is the inverse of the digital + audio sample rate. 24 microseconds has been + determined to be the sweet spot, and corresponds + to approximately 41 kHz, which is close to + CD-quality (44.1 kHz). A shorter poll interval + may produce more pleasant tones, but if the + poll is too short then the code will not have + enough time to calculate the new sample and + the resulting audio becomes unstable and + inaccurate. + */ + #define POLL_INTERVAL_IN_MICROSECONDS 24 + /* + Eight voice polyphony can be simulated. + Any more voices and the + resolution is too low to distinguish; + also, the code becomes too slow to keep + up with the poll interval. This value + can be safely reduced below eight if + there are issues. + + Note this is NOT the same as the MIDI + polyphony limit, which is 15 (based + on using channel 2 through 16 for + polyphonic expression mode). + */ + #define POLYPHONY_LIMIT 8 + /* + This defines which hardware alarm + and interrupt address are used + to time the call of the poll() function. + */ + #define ALARM_NUM 2 + #define ALARM_IRQ TIMER_IRQ_2 + /* + A basic EQ level can be stored to perform + simple loudness adjustments at certain + frequencies where human hearing is sensitive. + + By default it's off but you can change this + flag to "true" to enable it. This may also + be moved to a Advanced menu option. + */ + #define EQUAL_LOUDNESS_ADJUST true + /* + This class defines a virtual oscillator. + It stores an oscillation frequency in + the form of an increment value, which is + how much a counter would have to be increased + every time the poll() interval is reached, + such that a counter overflows from 0 to 65,535 + back to zero at some frequency per second. + + The value of the counter is useful for reading + a waveform sample, so that an analog signal + can be emulated by reading the sample at each + poll() based on how far the counter has moved + towards 65,536. + */ + class oscillator { + public: + uint16_t increment = 0; + uint16_t counter = 0; + byte a = 127; + byte b = 128; + byte c = 255; + uint16_t ab = 0; + uint16_t cd = 0; + byte eq = 0; + }; + oscillator synth[POLYPHONY_LIMIT]; // maximum polyphony + std::queue<byte> synthChQueue; + const byte attenuation[] = {64,24,17,14,12,11,10,9,8}; // full volume in mono mode; equalized volume in poly. + + byte arpeggiatingNow = UNUSED_NOTE; // if this is 255, set to off (0% duty cycle) + uint64_t arpeggiateTime = 0; // Used to keep track of when this note started playing in ARPEG mode + uint64_t arpeggiateLength = 65536; // in microseconds. approx a 1/32 note at 114 BPM + + // RUN ON CORE 2 + void poll() { + hw_clear_bits(&timer_hw->intr, 1u << ALARM_NUM); + timer_hw->alarm[ALARM_NUM] = readClock() + POLL_INTERVAL_IN_MICROSECONDS; + uint32_t mix = 0; + byte voices = POLYPHONY_LIMIT; + uint16_t p; + byte t; + byte level = 0; + for (byte i = 0; i < POLYPHONY_LIMIT; i++) { + if (synth[i].increment) { + synth[i].counter += synth[i].increment; // should loop from 65536 -> 0 + p = synth[i].counter; + t = p >> 8; + switch (currWave) { + case WAVEFORM_SAW: break; + case WAVEFORM_TRIANGLE: p = 2 * ((p >> 15) ? p : (65535 - p)); break; + case WAVEFORM_SQUARE: p = 0 - (p > (32768 - modWheel.curValue * 7 * 16)); break; + case WAVEFORM_HYBRID: if (t <= synth[i].a) { + p = 0; + } else if (t < synth[i].b) { + p = (t - synth[i].a) * synth[i].ab; + } else if (t <= synth[i].c) { + p = 65535; + } else { + p = (256 - t) * synth[i].cd; + }; break; + case WAVEFORM_SINE: p = sine[t] << 8; break; + case WAVEFORM_STRINGS: p = strings[t] << 8; break; + case WAVEFORM_CLARINET: p = clarinet[t] << 8; break; + default: break; + } + mix += (p * synth[i].eq); // P[16bit] * EQ[3bit] =[19bit] + } else { + --voices; + } + } + mix *= attenuation[(playbackMode == SYNTH_POLY) * voices]; // [19bit]*atten[6bit] = [25bit] + mix *= velWheel.curValue; // [25bit]*vel[7bit]=[32bit], poly+ + level = mix >> 24; // [32bit] - [8bit] = [24bit] + if(audioD&AUDIO_PIEZO)pwm_set_chan_level(PIEZO_SLICE, PIEZO_CHNL, level); + if(audioD&AUDIO_AJACK)pwm_set_chan_level(AJACK_SLICE, AJACK_CHNL, level); + } + // RUN ON CORE 1 + byte isoTwoTwentySix(float f) { + /* + a very crude implementation of ISO 226 + equal loudness curves + Hz dB Amp ~ sqrt(10^(dB/10)) + 200 0 8 + 800 -3 6 + 1500 0 8 + 3250 -6 4 + 5000 0 8 + */ + if ((f < 8.0) || (f > 12500.0)) { // really crude low- and high-pass + return 0; + } else { + if (EQUAL_LOUDNESS_ADJUST) { + if ((f <= 200.0) || (f >= 5000.0)) { + return 8; + } else { + if (f < 1500.0) { + return 6 + 2 * (float)(abs(f-800) / 700); + } else { + return 4 + 4 * (float)(abs(f-3250) / 1750); + } + } + } else { + return 8; + } + } + } + void setSynthFreq(float frequency, byte channel) { + byte c = channel - 1; + float f = frequency * exp2(pbWheel.curValue * PITCH_BEND_SEMIS / 98304.0); + synth[c].counter = 0; + synth[c].increment = round(f * POLL_INTERVAL_IN_MICROSECONDS * 0.065536); // cycle 0-65535 at resultant frequency + synth[c].eq = isoTwoTwentySix(f); + if (currWave == WAVEFORM_HYBRID) { + if (f < TRANSITION_SQUARE) { + synth[c].b = 128; + } else if (f < TRANSITION_SAW_LOW) { + synth[c].b = (byte)(128 + 127 * (f - TRANSITION_SQUARE) / (TRANSITION_SAW_LOW - TRANSITION_SQUARE)); + } else if (f < TRANSITION_SAW_HIGH) { + synth[c].b = 255; + } else if (f < TRANSITION_TRIANGLE) { + synth[c].b = (byte)(127 + 128 * (TRANSITION_TRIANGLE - f) / (TRANSITION_TRIANGLE - TRANSITION_SAW_HIGH)); + } else { + synth[c].b = 127; + } + if (f < TRANSITION_SAW_LOW) { + synth[c].a = 255 - synth[c].b; + synth[c].c = 255; + } else { + synth[c].a = 0; + synth[c].c = synth[c].b; + } + if (synth[c].a > 126) { + synth[c].ab = 65535; + } else { + synth[c].ab = 65535 / (synth[c].b - synth[c].a - 1); + } + synth[c].cd = 65535 / (256 - synth[c].c); + } + } + + // USE THIS IN MONO OR ARPEG MODE ONLY + + byte findNextHeldNote() { + byte n = UNUSED_NOTE; + for (byte i = 1; i <= BTN_COUNT; i++) { + byte j = positiveMod(arpeggiatingNow + i, BTN_COUNT); + if ((h[j].MIDIch) && (!h[j].isCmd)) { + n = j; + break; + } + } + return n; + } + void replaceMonoSynthWith(byte x) { + if (arpeggiatingNow == x) return; + h[arpeggiatingNow].synthCh = 0; + arpeggiatingNow = x; + if (arpeggiatingNow != UNUSED_NOTE) { + h[arpeggiatingNow].synthCh = 1; + setSynthFreq(h[arpeggiatingNow].frequency, 1); + } else { + setSynthFreq(0, 1); + } + } + + void resetSynthFreqs() { + while (!synthChQueue.empty()) { + synthChQueue.pop(); + } + for (byte i = 0; i < POLYPHONY_LIMIT; i++) { + synth[i].increment = 0; + synth[i].counter = 0; + } + for (byte i = 0; i < BTN_COUNT; i++) { + h[i].synthCh = 0; + } + if (playbackMode == SYNTH_POLY) { + for (byte i = 0; i < POLYPHONY_LIMIT; i++) { + synthChQueue.push(i + 1); + } + } + } + void sendProgramChange() { + if(midiD&MIDID_USB)UMIDI.sendProgramChange(programChange - 1, 1); + if(midiD&MIDID_SER)SMIDI.sendProgramChange(programChange - 1, 1); + } + + void updateSynthWithNewFreqs() { + if(midiD&MIDID_USB)UMIDI.sendPitchBend(pbWheel.curValue, 1); + if(midiD&MIDID_SER)SMIDI.sendPitchBend(pbWheel.curValue, 1); + for (byte i = 0; i < BTN_COUNT; i++) { + if (!(h[i].isCmd)) { + if (h[i].synthCh) { + setSynthFreq(h[i].frequency,h[i].synthCh); // pass all notes thru synth again if the pitch bend changes + } + } + } + } + + void trySynthNoteOn(byte x) { + if (playbackMode != SYNTH_OFF) { + if (playbackMode == SYNTH_POLY) { + // operate independently of MIDI + if (synthChQueue.empty()) { + sendToLog("synth channels all firing, so did not add one"); + } else { + h[x].synthCh = synthChQueue.front(); + synthChQueue.pop(); + sendToLog("popped " + std::to_string(h[x].synthCh) + " off the synth queue"); + setSynthFreq(h[x].frequency, h[x].synthCh); + } + } else { + // operate in lockstep with MIDI + if (h[x].MIDIch) { + replaceMonoSynthWith(x); + } + } + } + } + + void trySynthNoteOff(byte x) { + if (playbackMode && (playbackMode != SYNTH_POLY)) { + if (arpeggiatingNow == x) { + replaceMonoSynthWith(findNextHeldNote()); + } + } + if (playbackMode == SYNTH_POLY) { + if (h[x].synthCh) { + setSynthFreq(0, h[x].synthCh); + synthChQueue.push(h[x].synthCh); + h[x].synthCh = 0; + } + } + } + + void setupSynth(byte pin, byte slice) { + gpio_set_function(pin, GPIO_FUNC_PWM); // set that pin as PWM + pwm_set_phase_correct(slice, true); // phase correct sounds better + pwm_set_wrap(slice, 254); // 0 - 254 allows 0 - 255 level + pwm_set_clkdiv(slice, 1.0f); // run at full clock speed + pwm_set_chan_level(slice, PIEZO_CHNL, 0); // initialize at zero to prevent whining sound + pwm_set_enabled(slice, true); // ENGAGE! + hw_set_bits(&timer_hw->inte, 1u << ALARM_NUM); // initialize the timer + irq_set_exclusive_handler(ALARM_IRQ, poll); // function to run every interrupt + irq_set_enabled(ALARM_IRQ, true); // ENGAGE! + timer_hw->alarm[ALARM_NUM] = readClock() + POLL_INTERVAL_IN_MICROSECONDS; + resetSynthFreqs(); + sendToLog("synth is ready."); + } + + void arpeggiate() { + if (playbackMode == SYNTH_ARPEGGIO) { + if (runTime - arpeggiateTime > arpeggiateLength) { + arpeggiateTime = runTime; + replaceMonoSynthWith(findNextHeldNote()); + } + } + } + +// @animate + /* + This section of the code handles + LED animation responsive to key + presses + */ + /* + The coordinate system used to locate hex buttons + a certain distance and direction away relies on + a preset array of coordinate offsets corresponding + to each of the six linear directions on the hex grid. + These cardinal directions are enumerated to make + the code more legible for humans. + */ + #define HEX_DIRECTION_EAST 0 + #define HEX_DIRECTION_NE 1 + #define HEX_DIRECTION_NW 2 + #define HEX_DIRECTION_WEST 3 + #define HEX_DIRECTION_SW 4 + #define HEX_DIRECTION_SE 5 + // animation variables E NE NW W SW SE + int8_t vertical[] = { 0,-1,-1, 0, 1, 1}; + int8_t horizontal[] = { 2, 1,-1,-2,-1, 1}; + + uint64_t animFrame(byte x) { + if (h[x].timePressed) { // 2^20 microseconds is close enough to 1 second + return 1 + (((runTime - h[x].timePressed) * animationFPS) >> 20); + } else { + return 0; + } + } + void flagToAnimate(int8_t r, int8_t c) { + if (! + ( ( r < 0 ) || ( r >= ROWCOUNT ) + || ( c < 0 ) || ( c >= (2 * COLCOUNT) ) + || ( ( c + r ) & 1 ) + ) + ) { + h[(10 * r) + (c / 2)].animate = 1; + } + } + void animateMirror() { + for (byte i = 0; i < LED_COUNT; i++) { // check every hex + if ((!(h[i].isCmd)) && (h[i].MIDIch)) { // that is a held note + for (byte j = 0; j < LED_COUNT; j++) { // compare to every hex + if ((!(h[j].isCmd)) && (!(h[j].MIDIch))) { // that is a note not being played + int16_t temp = h[i].stepsFromC - h[j].stepsFromC; // look at difference between notes + if (animationType == ANIMATE_OCTAVE) { // set octave diff to zero if need be + temp = positiveMod(temp, current.tuning().cycleLength); + } + if (temp == 0) { // highlight if diff is zero + h[j].animate = 1; + } + } + } + } + } + } +/* + void animateOrbit() { + for (byte i = 0; i < LED_COUNT; i++) { // check every hex + if ((!(h[i].isCmd)) && (h[i].MIDIch) && ((h[i].inScale) || (!scaleLock))) { // that is a held note + byte tempDir = (animFrame(i) % 6); + flagToAnimate(h[i].coordRow + vertical[tempDir], h[i].coordCol + horizontal[tempDir]); // different neighbor each frame + } + } + } +*/ + void animateOrbit() { //BETTER ORBIT + const byte ORBIT_RADIUS = 2; // Radius of the orbit + const byte SLOW_FACTOR = 1; // Slowdown factor for animation + + for (byte i = 0; i < LED_COUNT; i++) { // Check every hex + if ((!(h[i].isCmd)) && (h[i].MIDIch) && // That is a held note + ((h[i].inScale) || (!scaleLock))) { // And is in scale or scale is unlocked + + byte frame = animFrame(i) / SLOW_FACTOR; // Slow down the animation + byte currentStep = frame % 12; // Determine position in the 12-light orbit + + // Determine row and column adjustments for the 12 possible directions + int8_t rowOffsets[12]; + int8_t colOffsets[12]; + + // Fill offsets for the 6 primary directions + for (byte dir = 0; dir < 6; dir++) { + rowOffsets[dir * 2] = ORBIT_RADIUS * vertical[dir]; + colOffsets[dir * 2] = ORBIT_RADIUS * horizontal[dir]; + + // Fill the intermediate (diagonal) positions + rowOffsets[dir * 2 + 1] = ORBIT_RADIUS * (vertical[dir] + vertical[(dir + 1) % 6]) / 2; + colOffsets[dir * 2 + 1] = ORBIT_RADIUS * (horizontal[dir] + horizontal[(dir + 1) % 6]) / 2; + } + + // Calculate light positions + int8_t light1Row = h[i].coordRow + rowOffsets[currentStep]; + int8_t light1Col = h[i].coordCol + colOffsets[currentStep]; + + byte oppositeStep = (currentStep + 6) % 12; // Opposite position in the 12-light ring + int8_t light2Row = h[i].coordRow + rowOffsets[oppositeStep]; + int8_t light2Col = h[i].coordCol + colOffsets[oppositeStep]; + + // Flag both lights for animation + flagToAnimate(light1Row, light1Col); + flagToAnimate(light2Row, light2Col); + } + } +} + +void animateStaticBeams() { + const byte MAX_BEAM_LENGTH = 13; // Maximum distance the beam can travel + static byte lastDirection[LED_COUNT] = {255}; // Track the last direction for each button (255 = uninitialized) + + for (byte i = 0; i < LED_COUNT; i++) { // Check every hex + // Skip buttons that are not in the playable area + if (h[i].isCmd || (!h[i].inScale && scaleLock)) { + continue; + } + + if (h[i].btnState == BTN_STATE_NEWPRESS) { // Button was just pressed + uint64_t clockValue = readClock(); // Get system clock + + // Choose a new random direction, excluding the last one + byte newDirection; + do { + newDirection = clockValue % 3; // Randomly pick 0, 1, or 2 + clockValue /= 3; // Update clockValue for a new seed + } while (newDirection == lastDirection[i]); // Exclude last direction + + lastDirection[i] = newDirection; // Store new direction + } + + if (h[i].btnState == BTN_STATE_HELD || h[i].btnState == BTN_STATE_NEWPRESS) { // Active button + byte baseDirection = lastDirection[i] * 2; // Convert to hex direction (0, 2, or 4) + byte oppositeDirection = (baseDirection + 3) % 6; // Opposite direction + + // Light up the entire beam in both directions + for (byte length = 1; length <= MAX_BEAM_LENGTH; length++) { + // Beam in primary direction + int8_t beam1Row = h[i].coordRow + (length * vertical[baseDirection]); + int8_t beam1Col = h[i].coordCol + (length * horizontal[baseDirection]); + + // Beam in opposite direction + int8_t beam2Row = h[i].coordRow + (length * vertical[oppositeDirection]); + int8_t beam2Col = h[i].coordCol + (length * horizontal[oppositeDirection]); + + // Flag both beams for animation + flagToAnimate(beam1Row, beam1Col); + flagToAnimate(beam2Row, beam2Col); + } + } + } +} + + void animateRadial() { + for (byte i = 0; i < LED_COUNT; i++) { // check every hex + if (!(h[i].isCmd) && (h[i].inScale || !scaleLock)) { // that is a note + uint64_t radius = animFrame(i); + if ((radius > 0) && (radius < 16)) { // played in the last 16 frames + byte steps = ((animationType == ANIMATE_SPLASH) ? radius : 1); // star = 1 step to next corner; ring = 1 step per hex + int8_t turtleRow = h[i].coordRow + (radius * vertical[HEX_DIRECTION_SW]); + int8_t turtleCol = h[i].coordCol + (radius * horizontal[HEX_DIRECTION_SW]); + for (byte dir = HEX_DIRECTION_EAST; dir < 6; dir++) { // walk along the ring in each of the 6 hex directions + for (byte i = 0; i < steps; i++) { // # of steps to the next corner + flagToAnimate(turtleRow,turtleCol); // flag for animation + turtleRow += (vertical[dir] * (radius / steps)); + turtleCol += (horizontal[dir] * (radius / steps)); + } + } + } + } + } + } + + void animateRadialReverse() { //inverted splash/star + #define MAX_RADIUS 5 + for (byte i = 0; i < LED_COUNT; i++) { // Check every hex + if (!(h[i].isCmd) && (h[i].inScale || !scaleLock)) { // That is a note + uint64_t frame = animFrame(i); // Current animation frame + if ((frame > 0) && (frame < MAX_RADIUS)) { // Played in the last X frames + uint8_t reverseRadius = MAX_RADIUS - frame; // Calculate reverse radius + byte steps = ((animationType == ANIMATE_SPLASH_REVERSE) ? reverseRadius : 1); // Steps depend on animation type + int8_t turtleRow = h[i].coordRow + (reverseRadius * vertical[HEX_DIRECTION_SW]); + int8_t turtleCol = h[i].coordCol + (reverseRadius * horizontal[HEX_DIRECTION_SW]); + for (byte dir = HEX_DIRECTION_EAST; dir < 6; dir++) { // Walk along the ring in 6 hex directions + for (byte j = 0; j < steps; j++) { // Steps to the next corner + flagToAnimate(turtleRow, turtleCol); // Flag for animation + turtleRow += (vertical[dir] * (reverseRadius / steps)); + turtleCol += (horizontal[dir] * (reverseRadius / steps)); + } + } + } + } + } +} + + void animateLEDs() { + for (byte i = 0; i < LED_COUNT; i++) { + h[i].animate = 0; + } + if (animationType) { + switch (animationType) { + case ANIMATE_STAR: case ANIMATE_SPLASH: + animateRadial(); + break; + case ANIMATE_ORBIT: + animateOrbit(); + break; + case ANIMATE_OCTAVE: case ANIMATE_BY_NOTE: + animateMirror(); + break; + case ANIMATE_BEAMS: + animateStaticBeams(); + break; + case ANIMATE_SPLASH_REVERSE: case ANIMATE_STAR_REVERSE: + animateRadialReverse(); + break; + default: + break; + } + } + } + +// @assignment + /* + This section of the code contains broad + procedures for assigning musical notes + and related values to each button + of the hex grid. + */ + // run this if the layout, key, or transposition changes, but not if color or scale changes + void assignPitches() { + sendToLog("assignPitch was called:"); + for (byte i = 0; i < LED_COUNT; i++) { + if (!(h[i].isCmd)) { + // steps is the distance from C + // the stepsToMIDI function needs distance from A4 + // it also needs to reflect any transposition, but + // NOT the key of the scale. + float N = stepsToMIDI(current.pitchRelToA4(h[i].stepsFromC)); + if (N < 0 || N >= 128) { + h[i].note = UNUSED_NOTE; + h[i].bend = 0; + h[i].frequency = 0.0; + } else { + h[i].note = ((N >= 127) ? 127 : round(N)); + h[i].bend = (ldexp(N - h[i].note, 13) / MPEpitchBendSemis); + h[i].frequency = MIDItoFreq(N); + } + sendToLog( + "hex #" + std::to_string(i) + ", " + + "steps=" + std::to_string(h[i].stepsFromC) + ", " + + "isCmd? " + std::to_string(h[i].isCmd) + ", " + + "note=" + std::to_string(h[i].note) + ", " + + "bend=" + std::to_string(h[i].bend) + ", " + + "freq=" + std::to_string(h[i].frequency) + ", " + + "inScale? " + std::to_string(h[i].inScale) + "." + ); + } + } + sendToLog("assignPitches complete."); + } + void applyScale() { + sendToLog("applyScale was called:"); + for (byte i = 0; i < LED_COUNT; i++) { + if (!(h[i].isCmd)) { + if (current.scale().tuning == ALL_TUNINGS) { + h[i].inScale = 1; + } else { + byte degree = current.keyDegree(h[i].stepsFromC); + if (degree == 0) { + h[i].inScale = 1; // the root is always in the scale + } else { + byte tempSum = 0; + byte iterator = 0; + while (degree > tempSum) { + tempSum += current.scale().pattern[iterator]; + iterator++; + } // add the steps in the scale, and you're in scale + h[i].inScale = (tempSum == degree); // if the note lands on one of those sums + } + } + sendToLog( + "hex #" + std::to_string(i) + ", " + + "steps=" + std::to_string(h[i].stepsFromC) + ", " + + "isCmd? " + std::to_string(h[i].isCmd) + ", " + + "note=" + std::to_string(h[i].note) + ", " + + "inScale? " + std::to_string(h[i].inScale) + "." + ); + } + } + setLEDcolorCodes(); + sendToLog("applyScale complete."); + } + void applyLayout() { // call this function when the layout changes + sendToLog("buildLayout was called:"); +/////////////////////////////////////////////////////////////////////////////////////// + int8_t acrossSteps = current.layout().acrossSteps; // x + int8_t dnLeftSteps = current.layout().dnLeftSteps; // y + if(mirrorUpDown) + { + dnLeftSteps = -(acrossSteps + dnLeftSteps); // y = -(x + y) + } + if(mirrorLeftRight) + { + dnLeftSteps = acrossSteps + dnLeftSteps; // y = x + y + acrossSteps = -acrossSteps; // x = -x + } + for(byte rotations = 0; rotations < layoutRotation; rotations++) + { + byte keyOffsetY = dnLeftSteps; + byte keyOffsetX = acrossSteps; + dnLeftSteps = keyOffsetX + keyOffsetY; + keyOffsetY = dnLeftSteps; + dnLeftSteps = -acrossSteps; + acrossSteps = keyOffsetY; + } +//////////////////////////////////////////////////////////////////////////////////////// + for (byte i = 0; i < LED_COUNT; i++) { + if (!(h[i].isCmd)) { + int8_t distCol = h[i].coordCol - h[current.layout().hexMiddleC].coordCol; + int8_t distRow = h[i].coordRow - h[current.layout().hexMiddleC].coordRow; + h[i].stepsFromC = ( + (distCol * acrossSteps) + + (distRow * ( + acrossSteps + + (2 * dnLeftSteps) + )) + ) / 2; + sendToLog( + "hex #" + std::to_string(i) + ", " + + "steps from C4=" + std::to_string(h[i].stepsFromC) + "." + ); + } + } + applyScale(); // when layout changes, have to re-apply scale and re-apply LEDs + assignPitches(); // same with pitches + sendToLog("buildLayout complete."); + } + void cmdOn(byte x) { // volume and mod wheel read all current buttons + switch (h[x].note) { + case CMDB + 3: + toggleWheel = !toggleWheel; + break; + case HARDWARE_V1_2: + Hardware_Version = h[x].note; + setupHardware(); + break; + default: + // the rest should all be taken care of within the wheelDef structure + break; + } + } + void cmdOff(byte x) { // pitch bend wheel only if buttons held. + switch (h[x].note) { + default: + break; // nothing; should all be taken care of within the wheelDef structure + } + } + +// @menu + /* + This section of the code handles the + dot matrix screen and, most importantly, + the menu system display and controls. + + The following library is used: documentation + is also available here. + https://github.com/Spirik/GEM + */ + #define GEM_DISABLE_GLCD // this line is needed to get the B&W display to work + /* + The GEM menu library accepts initialization + values to set the width of various components + of the menu display, as below. + */ + #define MENU_ITEM_HEIGHT 10 + #define MENU_PAGE_SCREEN_TOP_OFFSET 10 + #define MENU_VALUES_LEFT_OFFSET 78 + #define CONTRAST_AWAKE 63 + #define CONTRAST_SCREENSAVER 1 + // Create an instance of the U8g2 graphics library. + U8G2_SH1107_SEEED_128X128_F_HW_I2C u8g2(U8G2_R2, /* reset=*/ U8X8_PIN_NONE); + // Create menu object of class GEM_u8g2. Supply its constructor with reference to u8g2 object we created earlier + GEM_u8g2 menu( + u8g2, GEM_POINTER_ROW, GEM_ITEMS_COUNT_AUTO, + MENU_ITEM_HEIGHT, MENU_PAGE_SCREEN_TOP_OFFSET, MENU_VALUES_LEFT_OFFSET + ); + bool screenSaverOn = 0; + uint64_t screenTime = 0; // GFX timer to count if screensaver should go on + const uint64_t screenSaverTimeout = (1u << 23); // 2^23 microseconds ~ 8 seconds + /* + Create menu page object of class GEMPage. + Menu page holds menu items (GEMItem) and represents menu level. + Menu can have multiple menu pages (linked to each other) with multiple menu items each. + + GEMPage constructor creates each page with the associated label. + GEMItem constructor can create many different sorts of menu items. + The items here are navigation links. + The first parameter is the item label. + The second parameter is the destination page when that item is selected. + */ + GEMPage menuPageMain("HexBoard MIDI Controller"); + GEMPage menuPageTuning("Tuning"); + GEMItem menuGotoTuning("Tuning", menuPageTuning); + GEMItem menuTuningBack("<< Back", menuPageMain); + GEMPage menuPageLayout("Layout"); + GEMItem menuGotoLayout("Layout", menuPageLayout); + GEMItem menuLayoutBack("<< Back", menuPageMain); + GEMPage menuPageScales("Scales"); + GEMItem menuGotoScales("Scales", menuPageScales); + GEMItem menuScalesBack("<< Back", menuPageMain); + GEMPage menuPageColors("Color options"); + GEMItem menuGotoColors("Color options", menuPageColors); + GEMItem menuColorsBack("<< Back", menuPageMain); + GEMPage menuPageSynth("Synth options"); + GEMItem menuGotoSynth("Synth options", menuPageSynth); + GEMItem menuSynthBack("<< Back", menuPageMain); + GEMPage menuPageMIDI("MIDI options"); + GEMItem menuGotoMIDI("MIDI options", menuPageMIDI); + GEMItem menuMIDIBack("<< Back", menuPageMain); + GEMPage menuPageControl("Control wheel"); + GEMItem menuGotoControl("Control wheel", menuPageControl); + GEMItem menuControlBack("<< Back", menuPageMain); + GEMPage menuPageAdvanced("Advanced"); + GEMItem menuGotoAdvanced("Advanced", menuPageAdvanced); + GEMItem menuAdvancedBack("<< Back", menuPageMain); + GEMPage menuPageReboot("Ready to flash firmware!"); + /* + We haven't written the code for some procedures, + but the menu item needs to know the address + of procedures it has to run when it's selected. + So we forward-declare a placeholder for the + procedure like this, so that the menu item + can be built, and then later we will define + this procedure in full. + */ + void changeTranspose(); + void rebootToBootloader(); + /* + This GEMItem is meant to just be a read-only text label. + To be honest I don't know how to get just a plain text line to show here other than this! + */ + void fakeButton() {} + GEMItem menuItemVersion("1.1 beta", fakeButton); + SelectOptionByte optionByteHardware[] = { + { "V1.1", HARDWARE_UNKNOWN }, { "V1.1" , HARDWARE_V1_1 }, + { "V1.2", HARDWARE_V1_2 } + }; + GEMSelect selectHardware( sizeof(optionByteHardware) / sizeof(SelectOptionByte), optionByteHardware); + GEMItem menuItemHardware("HexBoard", Hardware_Version, selectHardware, GEM_READONLY); + /* + This GEMItem runs a given procedure when you select it. + We must declare or define that procedure first. + */ + GEMItem menuItemUSBBootloader("Update Firmware", rebootToBootloader); + /* + Tunings, layouts, scales, and keys are defined + earlier in this code. We should not have to + manually type in menu objects for those + pre-loaded values. Instead, we will use routines to + construct menu items automatically. + + These lines are forward declarations for + the menu objects we will make later. + This allocates space in memory with + enough size to procedurally fill + the objects based on the contents of + the pre-loaded tuning/layout/etc. definitions + we defined above. + */ + GEMItem* menuItemTuning[TUNINGCOUNT]; + GEMItem* menuItemLayout[layoutCount]; + GEMItem* menuItemScales[scaleCount]; + GEMSelect* selectKey[TUNINGCOUNT]; + GEMItem* menuItemKeys[TUNINGCOUNT]; + /* + We are now creating some GEMItems that let you + 1) select a value from a list of options, + 2) update a given variable based on what was chosen, + 3) if necessary, run a procedure as well once the value's chosen. + + The list of options is in the form of a 2-d array. + There are A arrays, one for each option. + Each is 2 entries long. First entry is the label + for that choice, second entry is the value associated. + + These arrays go into a typedef that depends on the type of the variable + being selected (i.e. Byte for small positive integers; Int for + sign-dependent and large integers). + + Then that typeDef goes into a GEMSelect object, with parameters + equal to the number of entries in the array, and the storage size of one element + in the array. The GEMSelect object is basically just a pointer to the + array of choices. The GEMItem then takes the GEMSelect pointer as a parameter. + + The fact that GEM expects pointers and references makes it tricky + to work with if you are new to C++. + */ + SelectOptionByte optionByteMPEpitchBend[] = { { "2", 2}, {"12", 12}, {"24", 24}, {"48", 48}, {"96", 96} }; + GEMSelect selectMPEpitchBend( sizeof(optionByteMPEpitchBend) / sizeof(SelectOptionByte), optionByteMPEpitchBend); + GEMItem menuItemMPEpitchBend( "MPE Bend:", MPEpitchBendSemis, selectMPEpitchBend, assignPitches); + + SelectOptionByte optionByteYesOrNo[] = { { "No", 0 }, { "Yes" , 1 } }; + GEMSelect selectYesOrNo( sizeof(optionByteYesOrNo) / sizeof(SelectOptionByte), optionByteYesOrNo); + GEMItem menuItemScaleLock( "Scale lock?", scaleLock); + GEMItem menuItemPercep( "Fix color:", perceptual, setLEDcolorCodes); + GEMItem menuItemShiftColor( "ColorByKey", paletteBeginsAtKeyCenter, setLEDcolorCodes); + GEMItem menuItemWheelAlt( "Alt wheel?", wheelMode, selectYesOrNo); + + bool rotaryInvert = false; + GEMItem menuItemRotary( "Invert Encoder:", rotaryInvert); + + SelectOptionByte optionByteWheelType[] = { { "Springy", 0 }, { "Sticky", 1} }; + GEMSelect selectWheelType( sizeof(optionByteWheelType) / sizeof(SelectOptionByte), optionByteWheelType); + GEMItem menuItemPBBehave( "Pitch bend", pbSticky, selectWheelType); + GEMItem menuItemModBehave( "Mod wheel", modSticky, selectWheelType); + + SelectOptionByte optionBytePlayback[] = { { "Off", SYNTH_OFF }, { "Mono", SYNTH_MONO }, { "Arp'gio", SYNTH_ARPEGGIO }, { "Poly", SYNTH_POLY } }; + GEMSelect selectPlayback(sizeof(optionBytePlayback) / sizeof(SelectOptionByte), optionBytePlayback); + GEMItem menuItemPlayback( "Synth mode:", playbackMode, selectPlayback, resetSynthFreqs); + + // Hardware V1.2-only + SelectOptionByte optionByteAudioD[] = { + { "Buzzer", AUDIO_PIEZO }, { "Jack" , AUDIO_AJACK }, { "Both", AUDIO_BOTH } + }; + GEMSelect selectAudioD( sizeof(optionByteAudioD) / sizeof(SelectOptionByte), optionByteAudioD); + GEMItem menuItemAudioD("SynthOutput:", audioD, selectAudioD); + +//////////////////////////////////////////////////////////////// + + SelectOptionByte optionByteBPM[] = { + {"1 BPM", 1}, + {"2 BPM", 2}, + {"3 BPM", 3}, + {"4 BPM", 4}, + {"5 BPM", 5}, + {"6 BPM", 6}, + {"7 BPM", 7}, + {"8 BPM", 8}, + {"9 BPM", 9}, + {"10 BPM", 10}, + {"11 BPM", 11}, + {"12 BPM", 12}, + {"13 BPM", 13}, + {"14 BPM", 14}, + {"15 BPM", 15}, + {"16 BPM", 16}, + {"17 BPM", 17}, + {"18 BPM", 18}, + {"19 BPM", 19}, + {"20 BPM", 20}, + {"21 BPM", 21}, + {"22 BPM", 22}, + {"23 BPM", 23}, + {"24 BPM", 24}, + {"25 BPM", 25}, + {"26 BPM", 26}, + {"27 BPM", 27}, + {"28 BPM", 28}, + {"29 BPM", 29}, + {"30 BPM", 30}, + {"31 BPM", 31}, + {"32 BPM", 32}, + {"33 BPM", 33}, + {"34 BPM", 34}, + {"35 BPM", 35}, + {"36 BPM", 36}, + {"37 BPM", 37}, + {"38 BPM", 38}, + {"39 BPM", 39}, + {"40 BPM", 40}, + {"41 BPM", 41}, + {"42 BPM", 42}, + {"43 BPM", 43}, + {"44 BPM", 44}, + {"45 BPM", 45}, + {"46 BPM", 46}, + {"47 BPM", 47}, + {"48 BPM", 48}, + {"49 BPM", 49}, + {"50 BPM", 50}, + {"51 BPM", 51}, + {"52 BPM", 52}, + {"53 BPM", 53}, + {"54 BPM", 54}, + {"55 BPM", 55}, + {"56 BPM", 56}, + {"57 BPM", 57}, + {"58 BPM", 58}, + {"59 BPM", 59}, + {"60 BPM", 60}, + {"61 BPM", 61}, + {"62 BPM", 62}, + {"63 BPM", 63}, + {"64 BPM", 64}, + {"65 BPM", 65}, + {"66 BPM", 66}, + {"67 BPM", 67}, + {"68 BPM", 68}, + {"69 BPM", 69}, + {"70 BPM", 70}, + {"71 BPM", 71}, + {"72 BPM", 72}, + {"73 BPM", 73}, + {"74 BPM", 74}, + {"75 BPM", 75}, + {"76 BPM", 76}, + {"77 BPM", 77}, + {"78 BPM", 78}, + {"79 BPM", 79}, + {"80 BPM", 80}, + {"81 BPM", 81}, + {"82 BPM", 82}, + {"83 BPM", 83}, + {"84 BPM", 84}, + {"85 BPM", 85}, + {"86 BPM", 86}, + {"87 BPM", 87}, + {"88 BPM", 88}, + {"89 BPM", 89}, + {"90 BPM", 90}, + {"91 BPM", 91}, + {"92 BPM", 92}, + {"93 BPM", 93}, + {"94 BPM", 94}, + {"95 BPM", 95}, + {"96 BPM", 96}, + {"97 BPM", 97}, + {"98 BPM", 98}, + {"99 BPM", 99}, + {"100 BPM", 100}, + {"101 BPM", 101}, + {"102 BPM", 102}, + {"103 BPM", 103}, + {"104 BPM", 104}, + {"105 BPM", 105}, + {"106 BPM", 106}, + {"107 BPM", 107}, + {"108 BPM", 108}, + {"109 BPM", 109}, + {"110 BPM", 110}, + {"111 BPM", 111}, + {"112 BPM", 112}, + {"113 BPM", 113}, + {"114 BPM", 114}, + {"115 BPM", 115}, + {"116 BPM", 116}, + {"117 BPM", 117}, + {"118 BPM", 118}, + {"119 BPM", 119}, + {"120 BPM", 120}, + {"121 BPM", 121}, + {"122 BPM", 122}, + {"123 BPM", 123}, + {"124 BPM", 124}, + {"125 BPM", 125}, + {"126 BPM", 126}, + {"127 BPM", 127}, + {"128 BPM", 128}, + {"129 BPM", 129}, + {"130 BPM", 130}, + {"131 BPM", 131}, + {"132 BPM", 132}, + {"133 BPM", 133}, + {"134 BPM", 134}, + {"135 BPM", 135}, + {"136 BPM", 136}, + {"137 BPM", 137}, + {"138 BPM", 138}, + {"139 BPM", 139}, + {"140 BPM", 140}, + {"141 BPM", 141}, + {"142 BPM", 142}, + {"143 BPM", 143}, + {"144 BPM", 144}, + {"145 BPM", 145}, + {"146 BPM", 146}, + {"147 BPM", 147}, + {"148 BPM", 148}, + {"149 BPM", 149}, + {"150 BPM", 150}, + {"151 BPM", 151}, + {"152 BPM", 152}, + {"153 BPM", 153}, + {"154 BPM", 154}, + {"155 BPM", 155}, + {"156 BPM", 156}, + {"157 BPM", 157}, + {"158 BPM", 158}, + {"159 BPM", 159}, + {"160 BPM", 160}, + {"161 BPM", 161}, + {"162 BPM", 162}, + {"163 BPM", 163}, + {"164 BPM", 164}, + {"165 BPM", 165}, + {"166 BPM", 166}, + {"167 BPM", 167}, + {"168 BPM", 168}, + {"169 BPM", 169}, + {"170 BPM", 170}, + {"171 BPM", 171}, + {"172 BPM", 172}, + {"173 BPM", 173}, + {"174 BPM", 174}, + {"175 BPM", 175}, + {"176 BPM", 176}, + {"177 BPM", 177}, + {"178 BPM", 178}, + {"179 BPM", 179}, + {"180 BPM", 180}, + {"181 BPM", 181}, + {"182 BPM", 182}, + {"183 BPM", 183}, + {"184 BPM", 184}, + {"185 BPM", 185}, + {"186 BPM", 186}, + {"187 BPM", 187}, + {"188 BPM", 188}, + {"189 BPM", 189}, + {"190 BPM", 190}, + {"191 BPM", 191}, + {"192 BPM", 192}, + {"193 BPM", 193}, + {"194 BPM", 194}, + {"195 BPM", 195}, + {"196 BPM", 196}, + {"197 BPM", 197}, + {"198 BPM", 198}, + {"199 BPM", 199}, + {"200 BPM", 200}, + {"201 BPM", 201}, + {"202 BPM", 202}, + {"203 BPM", 203}, + {"204 BPM", 204}, + {"205 BPM", 205}, + {"206 BPM", 206}, + {"207 BPM", 207}, + {"208 BPM", 208}, + {"209 BPM", 209}, + {"210 BPM", 210}, + {"211 BPM", 211}, + {"212 BPM", 212}, + {"213 BPM", 213}, + {"214 BPM", 214}, + {"215 BPM", 215}, + {"216 BPM", 216}, + {"217 BPM", 217}, + {"218 BPM", 218}, + {"219 BPM", 219}, + {"220 BPM", 220}, + {"221 BPM", 221}, + {"222 BPM", 222}, + {"223 BPM", 223}, + {"224 BPM", 224}, + {"225 BPM", 225}, + {"226 BPM", 226}, + {"227 BPM", 227}, + {"228 BPM", 228}, + {"229 BPM", 229}, + {"230 BPM", 230}, + {"231 BPM", 231}, + {"232 BPM", 232}, + {"233 BPM", 233}, + {"234 BPM", 234}, + {"235 BPM", 235}, + {"236 BPM", 236}, + {"237 BPM", 237}, + {"238 BPM", 238}, + {"239 BPM", 239}, + {"240 BPM", 240}, + {"241 BPM", 241}, + {"242 BPM", 242}, + {"243 BPM", 243}, + {"244 BPM", 244}, + {"245 BPM", 245}, + {"246 BPM", 246}, + {"247 BPM", 247}, + {"248 BPM", 248}, + {"249 BPM", 249}, + {"250 BPM", 250}, + {"251 BPM", 251}, + {"252 BPM", 252}, + {"253 BPM", 253}, + {"254 BPM", 254}, + {"255 BPM", 255} + }; + + SelectOptionByte optionByteBPM_Multiplier[] = { + {"x1", 1}, + {"x2", 2}, + {"x3", 3}, + {"x4", 4}, + {"x5", 5}, + {"x6", 6}, + {"x7", 7}, + {"x8", 8}, + {"x9", 9}, + {"x10", 10}, + {"x11", 11}, + {"x12", 12}, + {"x13", 13}, + {"x14", 14}, + {"x15", 15}, + {"x16", 16}, + {"x17", 17}, + {"x18", 18}, + {"x19", 19}, + {"x20", 20}, + {"x21", 21}, + {"x22", 22}, + {"x23", 23}, + {"x24", 24}, + {"x25", 25}, + {"x26", 26}, + {"x27", 27}, + {"x28", 28}, + {"x29", 29}, + {"x30", 30}, + {"x31", 31}, + {"x32", 32}, + {"x33", 33}, + {"x34", 34}, + {"x35", 35}, + {"x36", 36}, + {"x37", 37}, + {"x38", 38}, + {"x39", 39}, + {"x40", 40}, + {"x41", 41}, + {"x42", 42}, + {"x43", 43}, + {"x44", 44}, + {"x45", 45}, + {"x46", 46}, + {"x47", 47}, + {"x48", 48}, + {"x49", 49}, + {"x50", 50}, + {"x51", 51}, + {"x52", 52}, + {"x53", 53}, + {"x54", 54}, + {"x55", 55}, + {"x56", 56}, + {"x57", 57}, + {"x58", 58}, + {"x59", 59}, + {"x60", 60}, + {"x61", 61}, + {"x62", 62}, + {"x63", 63}, + {"x64", 64}, + {"x65", 65}, + {"x66", 66}, + {"x67", 67}, + {"x68", 68}, + {"x69", 69}, + {"x70", 70}, + {"x71", 71}, + {"x72", 72}, + {"x73", 73}, + {"x74", 74}, + {"x75", 75}, + {"x76", 76}, + {"x77", 77}, + {"x78", 78}, + {"x79", 79}, + {"x80", 80}, + {"x81", 81}, + {"x82", 82}, + {"x83", 83}, + {"x84", 84}, + {"x85", 85}, + {"x86", 86}, + {"x87", 87}, + {"x88", 88}, + {"x89", 89}, + {"x90", 90}, + {"x91", 91}, + {"x92", 92}, + {"x93", 93}, + {"x94", 94}, + {"x95", 95}, + {"x96", 96}, + {"x97", 97}, + {"x98", 98}, + {"x99", 99}, + {"x100", 100}, + {"x101", 101}, + {"x102", 102}, + {"x103", 103}, + {"x104", 104}, + {"x105", 105}, + {"x106", 106}, + {"x107", 107}, + {"x108", 108}, + {"x109", 109}, + {"x110", 110}, + {"x111", 111}, + {"x112", 112}, + {"x113", 113}, + {"x114", 114}, + {"x115", 115}, + {"x116", 116}, + {"x117", 117}, + {"x118", 118}, + {"x119", 119}, + {"x120", 120}, + {"x121", 121}, + {"x122", 122}, + {"x123", 123}, + {"x124", 124}, + {"x125", 125}, + {"x126", 126}, + {"x127", 127}, + {"x128", 128}, + {"x129", 129}, + {"x130", 130}, + {"x131", 131}, + {"x132", 132}, + {"x133", 133}, + {"x134", 134}, + {"x135", 135}, + {"x136", 136}, + {"x137", 137}, + {"x138", 138}, + {"x139", 139}, + {"x140", 140}, + {"x141", 141}, + {"x142", 142}, + {"x143", 143}, + {"x144", 144}, + {"x145", 145}, + {"x146", 146}, + {"x147", 147}, + {"x148", 148}, + {"x149", 149}, + {"x150", 150}, + {"x151", 151}, + {"x152", 152}, + {"x153", 153}, + {"x154", 154}, + {"x155", 155}, + {"x156", 156}, + {"x157", 157}, + {"x158", 158}, + {"x159", 159}, + {"x160", 160}, + {"x161", 161}, + {"x162", 162}, + {"x163", 163}, + {"x164", 164}, + {"x165", 165}, + {"x166", 166}, + {"x167", 167}, + {"x168", 168}, + {"x169", 169}, + {"x170", 170}, + {"x171", 171}, + {"x172", 172}, + {"x173", 173}, + {"x174", 174}, + {"x175", 175}, + {"x176", 176}, + {"x177", 177}, + {"x178", 178}, + {"x179", 179}, + {"x180", 180}, + {"x181", 181}, + {"x182", 182}, + {"x183", 183}, + {"x184", 184}, + {"x185", 185}, + {"x186", 186}, + {"x187", 187}, + {"x188", 188}, + {"x189", 189}, + {"x190", 190}, + {"x191", 191}, + {"x192", 192}, + {"x193", 193}, + {"x194", 194}, + {"x195", 195}, + {"x196", 196}, + {"x197", 197}, + {"x198", 198}, + {"x199", 199}, + {"x200", 200}, + {"x201", 201}, + {"x202", 202}, + {"x203", 203}, + {"x204", 204}, + {"x205", 205}, + {"x206", 206}, + {"x207", 207}, + {"x208", 208}, + {"x209", 209}, + {"x210", 210}, + {"x211", 211}, + {"x212", 212}, + {"x213", 213}, + {"x214", 214}, + {"x215", 215}, + {"x216", 216}, + {"x217", 217}, + {"x218", 218}, + {"x219", 219}, + {"x220", 220}, + {"x221", 221}, + {"x222", 222}, + {"x223", 223}, + {"x224", 224}, + {"x225", 225}, + {"x226", 226}, + {"x227", 227}, + {"x228", 228}, + {"x229", 229}, + {"x230", 230}, + {"x231", 231}, + {"x232", 232}, + {"x233", 233}, + {"x234", 234}, + {"x235", 235}, + {"x236", 236}, + {"x237", 237}, + {"x238", 238}, + {"x239", 239}, + {"x240", 240}, + {"x241", 241}, + {"x242", 242}, + {"x243", 243}, + {"x244", 244}, + {"x245", 245}, + {"x246", 246}, + {"x247", 247}, + {"x248", 248}, + {"x249", 249}, + {"x250", 250}, + {"x251", 251}, + {"x252", 252}, + {"x253", 253}, + {"x254", 254}, + {"x255", 255} + }; + + GEMSelect selectFrequencyOfJI(sizeof(optionByteBPM) / sizeof(SelectOptionByte), optionByteBPM); + GEMSelect selectBPM_MultiplierOfJI(sizeof(optionByteBPM) / sizeof(SelectOptionByte), optionByteBPM_Multiplier); +/////////////////////////////////////////////////////////////////// + + // Roland MT-32 mode (1987) + SelectOptionByte optionByteRolandMT32[] = { + // Piano + {"APiano1", 1}, {"APiano2", 2}, {"APiano3", 3}, + {"EPiano1", 4}, {"EPiano2", 5}, {"EPiano3", 6}, {"EPiano4", 7}, + {"HonkyTonk",8}, + // Organ + {"EOrgan1", 9}, {"EOrgan2", 10}, {"EOrgan3", 11}, {"EOrgan4", 12}, + {"POrgan2", 13}, {"POrgan3", 14}, {"POrgan4", 15}, + {"Accordion",16}, + // Keybrd + {"Harpsi1", 17}, {"Harpsi2", 18}, {"Harpsi3", 19}, + {"Clavi 1", 20}, {"Clavi 2", 21}, {"Clavi 3", 22}, + {"Celesta", 23}, {"Celest2", 24}, + // S Brass + {"SBrass1", 25}, {"SBrass2", 26}, {"SBrass3", 27}, {"SBrass4", 28}, + // SynBass + {"SynBass", 29}, {"SynBas2", 30}, {"SynBas3", 31}, {"SynBas4", 32}, + // Synth 1 + {"Fantasy", 33}, {"HarmoPan",34}, {"Chorale", 35}, {"Glasses", 36}, + {"Soundtrack",37},{"Atmosphere",38},{"WarmBell",39},{"FunnyVox",40}, + // Synth 2 + {"EchoBell",41}, {"IceRain", 42}, {"Oboe2K1", 43}, {"EchoPan", 44}, + {"Dr.Solo", 45}, {"SchoolDaze",46},{"BellSinger",47},{"SquareWave",48}, + // Strings + {"StrSec1", 49}, {"StrSec2", 50}, {"StrSec3", 51}, {"Pizzicato", 52}, + {"Violin1", 53}, {"Violin2", 54}, {"Cello 1", 55}, {"Cello 2", 56}, + {"ContraBass",57}, {"Harp 1", 58}, {"Harp 2", 59}, + // Guitar + {"Guitar1", 60}, {"Guitar2", 61}, {"EGuitr1", 62}, {"EGuitr2", 63}, + {"Sitar", 64}, + // Bass + {"ABass 1", 65}, {"ABass 2", 66}, {"EBass 1", 67}, {"EBass 2", 68}, + {"SlapBass", 69},{"SlapBa2", 70}, {"Fretless", 71},{"Fretle2", 72}, + // Wind + {"Flute 1", 73}, {"Flute 2", 74}, {"Piccolo", 75}, {"Piccol2", 76}, + {"Recorder",77}, {"PanPipes",78}, + {"Sax 1", 79}, {"Sax 2", 80}, {"Sax 3", 81}, {"Sax 4", 82}, + {"Clarinet",83}, {"Clarin2", 84}, {"Oboe", 85}, {"EnglHorn", 86}, + {"Bassoon", 87}, {"Harmonica",88}, + // Brass + {"Trumpet", 89}, {"Trumpe2", 90}, {"Trombone",91}, {"Trombo2", 92}, + {"FrHorn1", 93}, {"FrHorn2", 94}, + {"Tuba", 95}, {"BrsSect", 96}, {"BrsSec2", 97}, + // Mallet + {"Vibe 1", 98}, {"Vibe 2", 99}, + {"SynMallet",100}, {"WindBell",101}, {"Glock",102}, {"TubeBell",103}, {"XyloPhone",104}, {"Marimba",105}, + // Special + {"Koto", 106}, {"Sho", 107}, {"Shakuhachi",108}, + {"Whistle",109}, {"Whistl2",110}, {"BottleBlow",111},{"BreathPipe",112}, + // Percussion + {"Timpani",113}, {"MelTom", 114}, {"DeepSnare",115}, + {"ElPerc1",116}, {"ElPerc2",117}, {"Taiko", 118}, {"TaikoRim",119}, + {"Cymbal",120}, {"Castanets",121}, {"Triangle",122}, + // Effects + {"OrchHit",123}, {"Telephone",124}, {"BirdTweet",125}, {"1NoteJam",126}, {"WaterBells",127}, {"JungleTune",128}, + }; + GEMSelect selectRolandMT32(sizeof(optionByteRolandMT32) / sizeof(SelectOptionByte), optionByteRolandMT32); + GEMItem menuItemRolandMT32("RolandMT32:", programChange, selectRolandMT32, sendProgramChange); + + // General MIDI 1 + SelectOptionByte optionByteGeneralMidi[] = { + // Piano + {"Piano 1", 1}, {"Piano 2", 2}, {"Piano 3", 3}, {"HonkyTonk", 4}, + {"EPiano1", 5}, {"EPiano2", 6}, {"HarpsiChord", 7}, {"Clavinet", 8}, + // Chromatic Percussion + {"Celesta", 9}, {"Glockenspiel", 10}, {"MusicBox", 11}, {"Vibraphone", 12}, + {"Marimba", 13}, {"Xylophone", 14}, {"TubeBells", 15}, {"Dulcimer", 16}, + // Organ + {"Organ 1", 17}, {"Organ 2", 18}, {"Organ 3", 19}, {"ChurchOrgan", 20}, + {"ReedOrgan", 21}, {"Accordion", 22}, {"Harmonica", 23}, {"Bandoneon", 24}, + // Guitar + {"AGtrNylon", 25}, {"AGtrSteel", 26}, + {"EGtrJazz", 27}, {"EGtrClean", 28}, {"EGtrMuted", 29}, + {"EGtrOverdrive", 30}, {"EGtrDistortion", 31}, {"EGtrHarmonics", 32}, + // Bass + {"ABass", 33}, {"EBasFinger", 34}, {"EBasPicked", 35}, {"EBasFretless", 36}, + {"SlpBass1", 37}, {"SlpBas2", 38}, {"SynBas1", 39}, {"SynBas2", 40}, + // Strings + {"Violin", 41}, {"Viola", 42}, {"Cello", 43}, {"ContraBass", 44}, + {"TremoloStrings", 45}, {"PizzicatoStrings", 46}, {"OrchHarp", 47}, {"Timpani", 48}, + // Ensemble + {"StrEns1", 49}, {"StrEns2", 50}, {"SynStr1", 51}, {"SynStr2", 52}, + {"ChoirAahs", 53}, {"VoiceOohs", 54}, {"SynVoice", 55}, {"OrchHit", 56}, + // Brass + {"Trumpet", 57}, {"Trombone", 58}, {"Tuba", 59}, {"MutedTrumpet", 60}, + {"FrenchHorn", 61}, {"BrassSection", 62}, {"SynBrs1", 63}, {"SynBrs2", 64}, + // Reed + {"Sop Sax", 65}, {"AltoSax", 66}, {"Ten Sax", 67}, {"BariSax", 68}, + {"Oboe", 69}, {"EnglHorn", 70}, {"Bassoon", 71}, {"Clarinet", 72}, + // Pipe + {"Piccolo", 73}, {"Flute", 74}, {"Recorder", 75}, {"PanFlute", 76}, + {"BlownBottle", 77}, {"Shakuhachi", 78}, {"Whistle", 79}, {"Ocarina", 80}, + // Synth Lead + {"Ld1Square", 81}, {"Ld2Sawtooth", 82}, {"Ld3Calliope", 83}, {"Ld4Chiff", 84}, + {"Ld5Charang", 85}, {"Ld6Voice", 86}, {"Ld7Fifths", 87}, {"Ld8Bass&Lead", 88}, + // Synth Pad + {"Pd1NewAge", 89}, {"Pd2Warm", 90}, {"Pd3Polysynth", 91}, {"Pd4Choir", 92}, + {"Pd5BowedGlass", 93}, {"Pd6Metallic", 94}, {"Pd7Halo", 95}, {"Pd8Sweep", 96}, + // Synth Effects + {"FX1Rain", 97}, {"FX2Soundtrack", 98}, {"FX3Crystal", 99}, {"FX4Atmosphere", 100}, + {"FX5Bright", 101}, {"FX6Goblins", 102}, {"FX7Echoes", 103}, {"FX8SciFi)", 104}, + // Ethnic + {"Sitar", 105}, {"Banjo", 106}, {"Shamisen", 107}, {"Koto", 108}, + {"Kalimba", 109}, {"BagPipe", 110}, {"Fiddle", 111}, {"Shanai", 112}, + // Percussive + {"TinkleBell", 113}, {"Cowbell", 114}, {"SteelDrums", 115}, {"WoodBlock", 116}, + {"TaikoDrum", 117}, {"MeloTom", 118}, {"SynDrum", 119}, {"RevCymbal", 120}, + // Sound Effects + {"GtrFretNoise", 121}, {"BreathNoise", 122}, {"Seashore", 123}, {"BirdTweet", 124}, + {"TelephoneRing", 125}, {"Helicopter", 126}, {"Applause", 127}, {"Gunshot", 128}, + }; + GEMSelect selectGeneralMidi(sizeof(optionByteGeneralMidi) / sizeof(SelectOptionByte), optionByteGeneralMidi); + GEMItem menuItemGeneralMidi("GeneralMidi:", programChange, selectGeneralMidi, sendProgramChange); + + + // doing this long-hand because the STRUCT has problems accepting string conversions of numbers for some reason + SelectOptionInt optionIntTransposeSteps[] = { + {"-127",-127},{"-126",-126},{"-125",-125},{"-124",-124},{"-123",-123},{"-122",-122},{"-121",-121},{"-120",-120},{"-119",-119},{"-118",-118},{"-117",-117},{"-116",-116},{"-115",-115},{"-114",-114},{"-113",-113}, + {"-112",-112},{"-111",-111},{"-110",-110},{"-109",-109},{"-108",-108},{"-107",-107},{"-106",-106},{"-105",-105},{"-104",-104},{"-103",-103},{"-102",-102},{"-101",-101},{"-100",-100},{"- 99",- 99},{"- 98",- 98}, + {"- 97",- 97},{"- 96",- 96},{"- 95",- 95},{"- 94",- 94},{"- 93",- 93},{"- 92",- 92},{"- 91",- 91},{"- 90",- 90},{"- 89",- 89},{"- 88",- 88},{"- 87",- 87},{"- 86",- 86},{"- 85",- 85},{"- 84",- 84},{"- 83",- 83}, + {"- 82",- 82},{"- 81",- 81},{"- 80",- 80},{"- 79",- 79},{"- 78",- 78},{"- 77",- 77},{"- 76",- 76},{"- 75",- 75},{"- 74",- 74},{"- 73",- 73},{"- 72",- 72},{"- 71",- 71},{"- 70",- 70},{"- 69",- 69},{"- 68",- 68}, + {"- 67",- 67},{"- 66",- 66},{"- 65",- 65},{"- 64",- 64},{"- 63",- 63},{"- 62",- 62},{"- 61",- 61},{"- 60",- 60},{"- 59",- 59},{"- 58",- 58},{"- 57",- 57},{"- 56",- 56},{"- 55",- 55},{"- 54",- 54},{"- 53",- 53}, + {"- 52",- 52},{"- 51",- 51},{"- 50",- 50},{"- 49",- 49},{"- 48",- 48},{"- 47",- 47},{"- 46",- 46},{"- 45",- 45},{"- 44",- 44},{"- 43",- 43},{"- 42",- 42},{"- 41",- 41},{"- 40",- 40},{"- 39",- 39},{"- 38",- 38}, + {"- 37",- 37},{"- 36",- 36},{"- 35",- 35},{"- 34",- 34},{"- 33",- 33},{"- 32",- 32},{"- 31",- 31},{"- 30",- 30},{"- 29",- 29},{"- 28",- 28},{"- 27",- 27},{"- 26",- 26},{"- 25",- 25},{"- 24",- 24},{"- 23",- 23}, + {"- 22",- 22},{"- 21",- 21},{"- 20",- 20},{"- 19",- 19},{"- 18",- 18},{"- 17",- 17},{"- 16",- 16},{"- 15",- 15},{"- 14",- 14},{"- 13",- 13},{"- 12",- 12},{"- 11",- 11},{"- 10",- 10},{"- 9",- 9},{"- 8",- 8}, + {"- 7",- 7},{"- 6",- 6},{"- 5",- 5},{"- 4",- 4},{"- 3",- 3},{"- 2",- 2},{"- 1",- 1},{"+/-0", 0},{"+ 1", 1},{"+ 2", 2},{"+ 3", 3},{"+ 4", 4},{"+ 5", 5},{"+ 6", 6},{"+ 7", 7}, + {"+ 8", 8},{"+ 9", 9},{"+ 10", 10},{"+ 11", 11},{"+ 12", 12},{"+ 13", 13},{"+ 14", 14},{"+ 15", 15},{"+ 16", 16},{"+ 17", 17},{"+ 18", 18},{"+ 19", 19},{"+ 20", 20},{"+ 21", 21},{"+ 22", 22}, + {"+ 23", 23},{"+ 24", 24},{"+ 25", 25},{"+ 26", 26},{"+ 27", 27},{"+ 28", 28},{"+ 29", 29},{"+ 30", 30},{"+ 31", 31},{"+ 32", 32},{"+ 33", 33},{"+ 34", 34},{"+ 35", 35},{"+ 36", 36},{"+ 37", 37}, + {"+ 38", 38},{"+ 39", 39},{"+ 40", 40},{"+ 41", 41},{"+ 42", 42},{"+ 43", 43},{"+ 44", 44},{"+ 45", 45},{"+ 46", 46},{"+ 47", 47},{"+ 48", 48},{"+ 49", 49},{"+ 50", 50},{"+ 51", 51},{"+ 52", 52}, + {"+ 53", 53},{"+ 54", 54},{"+ 55", 55},{"+ 56", 56},{"+ 57", 57},{"+ 58", 58},{"+ 59", 59},{"+ 60", 60},{"+ 61", 61},{"+ 62", 62},{"+ 63", 63},{"+ 64", 64},{"+ 65", 65},{"+ 66", 66},{"+ 67", 67}, + {"+ 68", 68},{"+ 69", 69},{"+ 70", 70},{"+ 71", 71},{"+ 72", 72},{"+ 73", 73},{"+ 74", 74},{"+ 75", 75},{"+ 76", 76},{"+ 77", 77},{"+ 78", 78},{"+ 79", 79},{"+ 80", 80},{"+ 81", 81},{"+ 82", 82}, + {"+ 83", 83},{"+ 84", 84},{"+ 85", 85},{"+ 86", 86},{"+ 87", 87},{"+ 88", 88},{"+ 89", 89},{"+ 90", 90},{"+ 91", 91},{"+ 92", 92},{"+ 93", 93},{"+ 94", 94},{"+ 95", 95},{"+ 96", 96},{"+ 97", 97}, + {"+ 98", 98},{"+ 99", 99},{"+100", 100},{"+101", 101},{"+102", 102},{"+103", 103},{"+104", 104},{"+105", 105},{"+106", 106},{"+107", 107},{"+108", 108},{"+109", 109},{"+110", 110},{"+111", 111},{"+112", 112}, + {"+113", 113},{"+114", 114},{"+115", 115},{"+116", 116},{"+117", 117},{"+118", 118},{"+119", 119},{"+120", 120},{"+121", 121},{"+122", 122},{"+123", 123},{"+124", 124},{"+125", 125},{"+126", 126},{"+127", 127} + }; + GEMSelect selectTransposeSteps( 255, optionIntTransposeSteps); + GEMItem menuItemTransposeSteps( "Transpose:", transposeSteps, selectTransposeSteps, changeTranspose); + +////////////////////////////////////////////////////////////////////////////////////////////////////// + // MIDI Channel selection + SelectOptionByte optionByteMIDIChannel[] = {{": 1",1},{": 2",2},{": 3",3},{": 4",4},{": 5",5},{": 6",6},{": 7",7},{": 8",8},{": 9",9},{": 10",10},{": 11",11},{": 12",12},{": 13",13},{": 14",14},{": 15",15},{": 16",16}}; + GEMSelect selectMIDIchannel(16,optionByteMIDIChannel); + GEMItem menuItemSelectMIDIChannel( "MIDI Channel", defaultMidiChannel, selectMIDIchannel); + + // MIDI force MPE option toggle + GEMItem menuItemToggleForceMPEChannels ("Force MPE", forceEnableMPE, resetTuningMIDI); + + // Layout rotation selection + SelectOptionByte optionByteLayoutRotation[] = {{"0 deg",0},{"60 deg",1},{"120 deg",2},{"180 deg",3},{"240 deg",4},{"300 deg",5},{"360 deg",6}}; + GEMSelect selectLayoutRotation(7,optionByteLayoutRotation); + GEMItem menuItemSelectLayoutRotation( "Rotate: ", layoutRotation, selectLayoutRotation, updateLayoutAndRotate); + + // Layout mirroring toggles + GEMItem mirrorLeftRightGEMItem("Mirror vert.", mirrorLeftRight, updateLayoutAndRotate); + GEMItem mirrorUpDownGEMItem ("Mirror hor." , mirrorUpDown, updateLayoutAndRotate); + + // Dynamic just intonation toggles and parameters + GEMItem menuItemToggleJI_BPM ("JI align BPM", useJustIntonationBPM,resetTuningMIDI); + GEMItem menuItemSetJI_BPM ("Beating BPM",justIntonationBPM,selectFrequencyOfJI); + GEMItem menuItemSetJI_BPM_Multiplier ("BPM mult.",justIntonationBPM_Multiplier,selectBPM_MultiplierOfJI); + GEMItem menuItemToggleDynamicJI ("Dynamic JI", useDynamicJustIntonation, resetTuningMIDI); + +////////////////////////////////////////////////////////////////////////////////////////////////////// + + SelectOptionByte optionByteColor[] = { { "Rainbow", RAINBOW_MODE }, { "Tiered" , TIERED_COLOR_MODE }, { "Alt", ALTERNATE_COLOR_MODE }, { "Fifths", RAINBOW_OF_FIFTHS_MODE }, { "Alt piano", PIANO_ALT_COLOR_MODE }, { "Piano", PIANO_COLOR_MODE }, { "Filament", PIANO_INCANDESCENT_COLOR_MODE } }; + GEMSelect selectColor( sizeof(optionByteColor) / sizeof(SelectOptionByte), optionByteColor); + GEMItem menuItemColor( "Color mode:", colorMode, selectColor, setLEDcolorCodes); + + SelectOptionByte optionByteAnimate[] = { { "None" , ANIMATE_NONE }, { "Octave", ANIMATE_OCTAVE }, + { "By Note", ANIMATE_BY_NOTE }, { "Star", ANIMATE_STAR }, { "Splash" , ANIMATE_SPLASH }, { "Orbit", ANIMATE_ORBIT }, {"Beams", ANIMATE_BEAMS}, {"rSplash", ANIMATE_SPLASH_REVERSE}, {"rStar", ANIMATE_STAR_REVERSE} }; + GEMSelect selectAnimate( sizeof(optionByteAnimate) / sizeof(SelectOptionByte), optionByteAnimate); + GEMItem menuItemAnimate( "Animation:", animationType, selectAnimate); + + SelectOptionByte optionByteBright[] = { { "Off", BRIGHT_OFF}, {"the end", BRIGHT_FAINTER}, {"Blackout", BRIGHT_FAINT}, {"Darker", BRIGHT_DARKER}, {"Dark", BRIGHT_DARK}, {"Dimmer", BRIGHT_DIMMER}, {"Dim", BRIGHT_DIM}, {"Low", BRIGHT_LOW}, {"Normal", BRIGHT_MID}, {"High", BRIGHT_HIGH}, {"THE SUN", BRIGHT_MAX } }; + GEMSelect selectBright( sizeof(optionByteBright) / sizeof(SelectOptionByte), optionByteBright); + GEMItem menuItemBright( "Brightness", globalBrightness, selectBright, setLEDcolorCodes); + + SelectOptionByte optionByteWaveform[] = { { "Hybrid", WAVEFORM_HYBRID }, { "Square", WAVEFORM_SQUARE }, { "Saw", WAVEFORM_SAW }, + {"Triangl", WAVEFORM_TRIANGLE}, {"Sine", WAVEFORM_SINE}, {"Strings", WAVEFORM_STRINGS}, {"Clrinet", WAVEFORM_CLARINET} }; + GEMSelect selectWaveform(sizeof(optionByteWaveform) / sizeof(SelectOptionByte), optionByteWaveform); + GEMItem menuItemWaveform( "Waveform:", currWave, selectWaveform, resetSynthFreqs); + + SelectOptionInt optionIntModWheel[] = { { "too slo", 1 }, { "Turtle", 2 }, { "Slow", 4 }, + { "Medium", 8 }, { "Fast", 16 }, { "Cheetah", 32 }, { "Instant", 127 } }; + GEMSelect selectModSpeed(sizeof(optionIntModWheel) / sizeof(SelectOptionInt), optionIntModWheel); + GEMItem menuItemModSpeed( "Mod wheel:", modWheelSpeed, selectModSpeed); + GEMItem menuItemVelSpeed( "Vel wheel:", velWheelSpeed, selectModSpeed); + + SelectOptionInt optionIntPBWheel[] = { { "too slo", 128 }, { "Turtle", 256 }, { "Slow", 512 }, + { "Medium", 1024 }, { "Fast", 2048 }, { "Cheetah", 4096 }, { "Instant", 16384 } }; + GEMSelect selectPBSpeed(sizeof(optionIntPBWheel) / sizeof(SelectOptionInt), optionIntPBWheel); + GEMItem menuItemPBSpeed( "PB wheel:", pbWheelSpeed, selectPBSpeed); + + // Call this procedure to return to the main menu + void menuHome() { + menu.setMenuPageCurrent(menuPageMain); + menu.drawMenu(); + } + + void rebootToBootloader() { + menu.setMenuPageCurrent(menuPageReboot); + menu.drawMenu(); + strip.clear(); + strip.show(); + rp2040.rebootToBootloader(); + } + /* + This procedure sets each layout menu item to be either + visible if that layout is available in the current tuning, + or hidden if not. + + It should run once after the layout menu items are + generated, and then once any time the tuning changes. + */ + void showOnlyValidLayoutChoices() { + for (byte L = 0; L < layoutCount; L++) { + menuItemLayout[L]->hide((layoutOptions[L].tuning != current.tuningIndex)); + } + sendToLog("menu: Layout choices were updated."); + } + /* + This procedure sets each scale menu item to be either + visible if that scale is available in the current tuning, + or hidden if not. + + It should run once after the scale menu items are + generated, and then once any time the tuning changes. + */ + void showOnlyValidScaleChoices() { + for (int S = 0; S < scaleCount; S++) { + menuItemScales[S]->hide((scaleOptions[S].tuning != current.tuningIndex) && (scaleOptions[S].tuning != ALL_TUNINGS)); + } + sendToLog("menu: Scale choices were updated."); + } + /* + This procedure sets each key spinner menu item to be either + visible if the key names correspond to the current tuning, + or hidden if not. + + It should run once after the key selectors are + generated, and then once any time the tuning changes. + */ + void showOnlyValidKeyChoices() { + for (int T = 0; T < TUNINGCOUNT; T++) { + menuItemKeys[T]->hide((T != current.tuningIndex)); + } + sendToLog("menu: Key choices were updated."); + } + + void updateLayoutAndRotate() { + applyLayout(); + u8g2.setDisplayRotation(current.layout().isPortrait ? U8G2_R2 : U8G2_R1); // and landscape / portrait rotation + } + /* + This procedure is run when a layout is selected via the menu. + It sets the current layout to the selected value. + If it's different from the previous one, then + re-apply the layout to the grid. In any case, go to the + main menu when done. + */ + void changeLayout(GEMCallbackData callbackData) { + byte selection = callbackData.valByte; + if (selection != current.layoutIndex) { + current.layoutIndex = selection; + updateLayoutAndRotate(); + } + menuHome(); + } + /* + This procedure is run when a scale is selected via the menu. + It sets the current scale to the selected value. + If it's different from the previous one, then + re-apply the scale to the grid. In any case, go to the + main menu when done. + */ + void changeScale(GEMCallbackData callbackData) { // when you change the scale via the menu + int selection = callbackData.valInt; + if (selection != current.scaleIndex) { + current.scaleIndex = selection; + applyScale(); + } + menuHome(); + } + /* + This procedure is run when the key is changed via the menu. + A key change results in a shift in the location of the + scale notes relative to the grid. + In this program, the only thing that occurs is that + the scale is reapplied to the grid. + The menu does not go home because the intent is to stay + on the scale/key screen. + */ + void changeKey() { // when you change the key via the menu + applyScale(); + } + /* + This procedure was declared already and is being defined now. + It's run when the transposition is changed via the menu. + It sets the current transposition to the selected value. + The effect of transposition is to change the sounded + notes but not the layout or display. + The procedure to re-assign pitches is therefore called. + The menu doesn't change because the transpose is a spinner select. + */ + void changeTranspose() { // when you change the transpose via the menu + current.transpose = transposeSteps; + assignPitches(); + updateSynthWithNewFreqs(); + } + /* + This procedure is run when the tuning is changed via the menu. + It affects almost everything in the program, so + quite a few items are reset, refreshed, and redone + when the tuning changes. + */ + void changeTuning(GEMCallbackData callbackData) { + byte selection = callbackData.valByte; + if (selection != current.tuningIndex) { + current.tuningIndex = selection; + current.layoutIndex = current.layoutsBegin(); // reset layout to first in list + current.scaleIndex = 0; // reset scale to "no scale" + current.keyStepsFromA = current.tuning().spanCtoA(); // reset key to C + showOnlyValidLayoutChoices(); // change list of choices in GEM Menu + showOnlyValidScaleChoices(); // change list of choices in GEM Menu + showOnlyValidKeyChoices(); // change list of choices in GEM Menu + updateLayoutAndRotate(); // apply changes above + resetTuningMIDI(); // clear out MIDI queue + resetSynthFreqs(); + } + menuHome(); + } + /* + The procedure below builds menu items for tuning, + layout, scales, and keys based on what's preloaded. + We already declared arrays of menu item objects earlier. + Now we cycle through those arrays, and create GEMItem objects for + each index. What's nice about doing this in an array is, + we do not have to assign a variable name to each object; we just + refer to it by its index in the array. + + The constructor "new GEMItem" is populated with the different + variables in the preset objects we defined earlier. + Then the menu item is added to the associated page. + The item must be entered with the asterisk operator + because an array index technically returns an address in memory + pointing to the object; the addMenuItem procedure wants + the contents of that item, which is what the * beforehand does. + */ + void createTuningMenuItems() { + for (byte T = 0; T < TUNINGCOUNT; T++) { + menuItemTuning[T] = new GEMItem(tuningOptions[T].name.c_str(), changeTuning, T); + menuPageTuning.addMenuItem(*menuItemTuning[T]); + } + } + void createLayoutMenuItems() { + for (byte L = 0; L < layoutCount; L++) { // create pointers to all layouts + menuItemLayout[L] = new GEMItem(layoutOptions[L].name.c_str(), changeLayout, L); + menuPageLayout.addMenuItem(*menuItemLayout[L]); + } + showOnlyValidLayoutChoices(); + } + void createKeyMenuItems() { + for (byte T = 0; T < TUNINGCOUNT; T++) { + selectKey[T] = new GEMSelect(tuningOptions[T].cycleLength, tuningOptions[T].keyChoices); + menuItemKeys[T] = new GEMItem("Key:", current.keyStepsFromA, *selectKey[T], changeKey); + menuPageScales.addMenuItem(*menuItemKeys[T]); + } + showOnlyValidKeyChoices(); + } + void createScaleMenuItems() { + for (int S = 0; S < scaleCount; S++) { // create pointers to all scale items, filter them as you go + menuItemScales[S] = new GEMItem(scaleOptions[S].name.c_str(), changeScale, S); + menuPageScales.addMenuItem(*menuItemScales[S]); + } + showOnlyValidScaleChoices(); + } + + void setupMenu() { + menu.setSplashDelay(0); + menu.init(); + /* + addMenuItem procedure adds that GEM object to the given page. + The menu items appear in the order they are added, + so to change the order in the menu change the order in the code. + */ + menuPageMain.addMenuItem(menuGotoTuning); + createTuningMenuItems(); + menuPageTuning.addMenuItem(menuItemToggleJI_BPM); + menuPageTuning.addMenuItem(menuItemSetJI_BPM); + menuPageTuning.addMenuItem(menuItemSetJI_BPM_Multiplier); + menuPageTuning.addMenuItem(menuItemToggleDynamicJI); + menuPageTuning.addMenuItem(menuTuningBack); + menuPageMain.addMenuItem(menuGotoLayout); + createLayoutMenuItems(); + menuPageLayout.addMenuItem(mirrorLeftRightGEMItem); + menuPageLayout.addMenuItem(mirrorUpDownGEMItem); + menuPageLayout.addMenuItem(menuItemSelectLayoutRotation); + menuPageLayout.addMenuItem(menuLayoutBack); + menuPageMain.addMenuItem(menuGotoScales); + createKeyMenuItems(); + menuPageScales.addMenuItem(menuItemScaleLock); + createScaleMenuItems(); + menuPageScales.addMenuItem(menuScalesBack); + menuPageMain.addMenuItem(menuGotoControl); + menuPageControl.addMenuItem(menuItemPBSpeed); + menuPageControl.addMenuItem(menuItemModSpeed); + menuPageControl.addMenuItem(menuItemVelSpeed); + menuPageControl.addMenuItem(menuControlBack); + menuPageMain.addMenuItem(menuGotoColors); + menuPageColors.addMenuItem(menuItemColor); + menuPageColors.addMenuItem(menuItemBright); + menuPageColors.addMenuItem(menuItemAnimate); + menuPageColors.addMenuItem(menuColorsBack); + menuPageMain.addMenuItem(menuGotoSynth); + menuPageSynth.addMenuItem(menuItemPlayback); + menuPageSynth.addMenuItem(menuItemWaveform); + // menuItemAudioD added here for hardware V1.2 + menuPageSynth.addMenuItem(menuItemRolandMT32); + menuPageSynth.addMenuItem(menuItemGeneralMidi); + menuPageSynth.addMenuItem(menuSynthBack); + menuPageMain.addMenuItem(menuGotoMIDI); + menuPageMIDI.addMenuItem(menuItemSelectMIDIChannel); + menuPageMIDI.addMenuItem(menuItemMPEpitchBend); + menuPageMIDI.addMenuItem(menuItemToggleForceMPEChannels); + menuPageMIDI.addMenuItem(menuMIDIBack); + menuPageMain.addMenuItem(menuItemTransposeSteps); + menuPageMain.addMenuItem(menuGotoAdvanced); + menuPageAdvanced.addMenuItem(menuItemVersion); + menuPageAdvanced.addMenuItem(menuItemHardware); + menuPageAdvanced.addMenuItem(menuItemRotary); + menuPageAdvanced.addMenuItem(menuItemPercep); + menuPageAdvanced.addMenuItem(menuItemShiftColor); + menuPageAdvanced.addMenuItem(menuItemWheelAlt); + menuPageAdvanced.addMenuItem(menuItemPBBehave); + menuPageAdvanced.addMenuItem(menuItemModBehave); + menuPageAdvanced.addMenuItem(menuItemUSBBootloader); + menuPageAdvanced.addMenuItem(menuAdvancedBack); + menuHome(); + } + void setupGFX() { + u8g2.begin(); // Menu and graphics setup + u8g2.setBusClock(1000000); // Speed up display + u8g2.setContrast(CONTRAST_AWAKE); // Set contrast + sendToLog("U8G2 graphics initialized."); + } + void screenSaver() { + if (screenTime <= screenSaverTimeout) { + screenTime = screenTime + lapTime; + if (screenSaverOn) { + screenSaverOn = 0; + u8g2.setContrast(CONTRAST_AWAKE); + } + } else { + if (!screenSaverOn) { + screenSaverOn = 1; + u8g2.setContrast(CONTRAST_SCREENSAVER); + //if(globalBrightness == BRIGHT_OFF) + { + u8g2.clear(); + } + } + } + } + +// @interface + /* + This section of the code handles reading + the rotary knob and physical hex buttons. + + Documentation: + Rotary knob code derived from: + https://github.com/buxtronix/arduino/tree/master/libraries/Rotary + Copyright 2011 Ben Buxton. Licenced under the GNU GPL Version 3. + Contact: bb@cactii.net + + when the mechanical rotary knob is turned, + the two pins go through a set sequence of + states during one physical "click", as follows: + Direction Binary state of pin A\B + Counterclockwise = 1\1, 0\1, 0\0, 1\0, 1\1 + Clockwise = 1\1, 1\0, 0\0, 0\1, 1\1 + + The neutral state of the knob is 1\1; a turn + is complete when 1\1 is reached again after + passing through all the valid states above, + at which point action should be taken depending + on the direction of the turn. + + The variable rotaryState stores all of this + data and refreshes it each loop of the 2nd processor. + Value Meaning + 0, 4 Knob is in neutral state + 1, 2, 3 CCW turn state 1, 2, 3 + 5, 6, 7 CW turn state 1, 2, 3 + 8, 16 Completed turn CCW, CW + */ + #define ROT_PIN_A 20 + #define ROT_PIN_B 21 + #define ROT_PIN_C 24 + byte rotaryState = 0; + const byte rotaryStateTable[8][4] = { + {0,5,1,0},{2,0,1,0},{2,3,1,0},{2,3,0,8}, + {0,5,1,0},{6,5,0,0},{6,5,7,0},{6,0,7,16} + }; + byte storeRotaryTurn = 0; + bool rotaryClicked = HIGH; + + void readHexes() { + /* This is the original way of reading buttons. multiplexer is doing the least movement. May be faster? + for (byte r = 0; r < ROWCOUNT; r++) { // Iterate through each of the row pins on the multiplexing chip. + for (byte d = 0; d < 4; d++) { + digitalWrite(mPin[d], (r >> d) & 1); + } + for (byte c = 0; c < COLCOUNT; c++) { // Now iterate through each of the column pins that are connected to the current row pin. + byte p = cPin[c]; // Hold the currently selected column pin in a variable. + pinMode(p, INPUT_PULLUP); // Set that row pin to INPUT_PULLUP mode (+3.3V / HIGH). + byte i = c + (r * COLCOUNT); + delayMicroseconds(6); // delay while column pin mode + bool didYouPressHex = (digitalRead(p) == LOW); // hex is pressed if it returns LOW. else not pressed + h[i].interpBtnPress(didYouPressHex); + if (h[i].btnState == BTN_STATE_NEWPRESS) { + h[i].timePressed = runTime; // log the time + } + pinMode(p, INPUT); // Set the selected column pin back to INPUT mode (0V / LOW). + } + }*/ + // trying out a new way which may reduce rf noise (and increase reliability) by reducing the ammount of times the columns get energized + for (byte c = 0; c < COLCOUNT; c++) { // Iterate through each of the column pins. + byte p = cPin[c]; // Hold the currently selected column pin in a variable. + pinMode(p, INPUT_PULLUP); // Set that column pin to INPUT_PULLUP mode (+3.3V / HIGH). + delayMicroseconds(0); // delay to energize column and stabilize (may need adjustment) + for (byte r = 0; r < ROWCOUNT; r++) { // Then iterate through each of the row pins on the multiplexing chip for the selected column. + for (byte d = 0; d < 4; d++) { + digitalWrite(mPin[d], (r >> d) & 1); // Selected multiplexer channel is pulled to ground. + } + byte i = c + (r * COLCOUNT);/* + byte tempSat = SAT_BW; + colorDef tempColor = {HUE_NONE, tempSat, (byte)(toggleWheel ? VALUE_SHADE : VALUE_LOW)}; + strip.setPixelColor(i, getLEDcode(tempColor)); + strip.show();*/ + delayMicroseconds(14); // Delay to allow signal to settle and improve reliability (found this number by experimentation) + bool didYouPressHex = (digitalRead(p) == LOW); // hex is pressed if it returns LOW. else not pressed + h[i].interpBtnPress(didYouPressHex); + if (h[i].btnState == BTN_STATE_NEWPRESS) { + h[i].timePressed = runTime; // log the time + } + } + pinMode(p, INPUT); // Set the selected column pin back to INPUT mode (0V / LOW). + } + for (byte i = 0; i < BTN_COUNT; i++) { // For all buttons in the deck + switch (h[i].btnState) { + case BTN_STATE_NEWPRESS: // just pressed + if (h[i].isCmd) { + cmdOn(i); + } else if (h[i].inScale || (!scaleLock)) { + tryMIDInoteOn(i); + trySynthNoteOn(i); + } + break; + case BTN_STATE_RELEASED: // just released + if (h[i].isCmd) { + cmdOff(i); + } else if (h[i].inScale || (!scaleLock)) { + tryMIDInoteOff(i); + trySynthNoteOff(i); + } + break; + case BTN_STATE_HELD: // held + break; + default: // inactive + break; + } + } + } + void updateWheels() { + velWheel.setTargetValue(); + bool upd = velWheel.updateValue(runTime); + if (upd) { + sendToLog("vel became " + std::to_string(velWheel.curValue)); + } + if (toggleWheel) { + pbWheel.setTargetValue(); + upd = pbWheel.updateValue(runTime); + if (upd) { + sendMIDIpitchBendToCh1(); + updateSynthWithNewFreqs(); + } + } else { + modWheel.setTargetValue(); + upd = modWheel.updateValue(runTime); + if (upd) { + sendMIDImodulationToCh1(); + } + } + } + void setupRotary() { + pinMode(ROT_PIN_A, INPUT_PULLUP); + pinMode(ROT_PIN_B, INPUT_PULLUP); + pinMode(ROT_PIN_C, INPUT_PULLUP); + } + void readKnob() { + rotaryState = rotaryStateTable[rotaryState & 7][ + (digitalRead(ROT_PIN_B) << 1) | digitalRead(ROT_PIN_A) + ]; + if (rotaryState & 24) { + storeRotaryTurn = rotaryState; + } + } + void dealWithRotary() { + if (menu.readyForKey()) { + bool temp = digitalRead(ROT_PIN_C); + if (temp > rotaryClicked) { + menu.registerKeyPress(GEM_KEY_OK); + screenTime = 0; + } + rotaryClicked = temp; + if (storeRotaryTurn != 0) { + if (rotaryInvert == true) { + menu.registerKeyPress((storeRotaryTurn == 8) ? GEM_KEY_DOWN : GEM_KEY_UP); + } else {menu.registerKeyPress((storeRotaryTurn == 8) ? GEM_KEY_UP : GEM_KEY_DOWN);} + storeRotaryTurn = 0; + screenTime = 0; + } + } + } + + void setupHardware() { + if (Hardware_Version == HARDWARE_V1_2) { + midiD = MIDID_USB | MIDID_SER; + audioD = AUDIO_PIEZO | AUDIO_AJACK; + menuPageSynth.addMenuItem(menuItemAudioD, 2); + globalBrightness = BRIGHT_DIM; + setLEDcolorCodes(); + rotaryInvert = true; + } + } + +// @mainLoop + /* + An Arduino program runs + the setup() function once, then + runs the loop() function on repeat + until the machine is powered off. + + The RP2040 has two identical cores. + Anything called from setup() and loop() + runs on the first core. + Anything called from setup1() and loop1() + runs on the second core. + + On the HexBoard, the second core is + dedicated to two timing-critical tasks: + running the synth emulator, and tracking + the rotary knob inputs. + Everything else runs on the first core. + */ + void setup() { + #if (defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)) + TinyUSB_Device_Init(0); // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040 + #endif + setupMIDI(); + setupFileSystem(); + Wire.setSDA(SDAPIN); + Wire.setSCL(SCLPIN); + setupPins(); + setupGrid(); + applyLayout(); + setupLEDs(); + setupGFX(); + setupRotary(); + setupMenu(); + for (byte i = 0; i < 5 && !TinyUSBDevice.mounted(); i++) { + delay(1); // wait until device mounted, maybe + } + } + void loop() { // run on first core + timeTracker(); // Time tracking functions + screenSaver(); // Reduces wear-and-tear on OLED panel + readHexes(); // Read and store the digital button states of the scanning matrix + arpeggiate(); // arpeggiate if synth mode allows it + updateWheels(); // deal with the pitch/mod wheel + animateLEDs(); // deal with animations + lightUpLEDs(); // refresh LEDs + dealWithRotary(); // deal with menu + } + void setup1() { // set up on second core + setupSynth(PIEZO_PIN, PIEZO_SLICE); + setupSynth(AJACK_PIN, AJACK_SLICE); + } + void loop1() { // run on second core + readKnob(); + } |